Matches in SemOpenAlex for { <https://semopenalex.org/work/W2550797657> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2550797657 endingPage "68" @default.
- W2550797657 startingPage "51" @default.
- W2550797657 abstract "Neural networks have gained a great deal of importance in the area of soft computing and are widely used in making predictions . The work presented in this paper is about the development of Artificial Neural Network (ANN) based models for the prediction of sugarcane yield in India. The ANN models have been experimented using different partitions of training patterns and different combinations of ANN parameters. Experiments have also been conducted for different number of neurons in hidden layer and the algorithms for ANN training. For this work, data has been obtained from the website of Directorate of Economics and Statistics, Ministry of Agriculture, Government of India. In this work, the experiments have been conducted for 2160 different ANN models. The least Root Mean Square Error (RMSE) value that could be achieved on test data was 4.03%. This has been achieved when the data was partitioned in such a way that there were 10% records in the test data, 10 neurons in hidden layer, learning rate was 0.001, the error goal was set to 0.01 and traincgb algorithm in MATLAB was used for ANN training." @default.
- W2550797657 created "2016-11-30" @default.
- W2550797657 creator A5065597080 @default.
- W2550797657 creator A5084934654 @default.
- W2550797657 creator A5089822866 @default.
- W2550797657 date "2015-09-30" @default.
- W2550797657 modified "2023-10-16" @default.
- W2550797657 title "Sugarcane Yield Forecasting using Artificial Neural Network Models" @default.
- W2550797657 cites W1492725832 @default.
- W2550797657 cites W1554663460 @default.
- W2550797657 cites W1561575136 @default.
- W2550797657 cites W1586335931 @default.
- W2550797657 cites W1594031697 @default.
- W2550797657 cites W172196394 @default.
- W2550797657 cites W192975702 @default.
- W2550797657 cites W1971735090 @default.
- W2550797657 cites W1984367183 @default.
- W2550797657 cites W1988686681 @default.
- W2550797657 cites W2001960815 @default.
- W2550797657 cites W2012796776 @default.
- W2550797657 cites W2020246210 @default.
- W2550797657 cites W2023213456 @default.
- W2550797657 cites W2025661344 @default.
- W2550797657 cites W2029803196 @default.
- W2550797657 cites W2035877127 @default.
- W2550797657 cites W2055000402 @default.
- W2550797657 cites W2059328003 @default.
- W2550797657 cites W2062672971 @default.
- W2550797657 cites W2069262297 @default.
- W2550797657 cites W2076750860 @default.
- W2550797657 cites W2101275971 @default.
- W2550797657 cites W2103028695 @default.
- W2550797657 cites W2113649544 @default.
- W2550797657 cites W2119991990 @default.
- W2550797657 cites W2151185515 @default.
- W2550797657 cites W2158442843 @default.
- W2550797657 cites W2159164703 @default.
- W2550797657 cites W2172213518 @default.
- W2550797657 cites W2223685346 @default.
- W2550797657 cites W2973774984 @default.
- W2550797657 cites W2992069019 @default.
- W2550797657 cites W2993267017 @default.
- W2550797657 cites W3133173605 @default.
- W2550797657 cites W3163695350 @default.
- W2550797657 cites W3207808956 @default.
- W2550797657 cites W842225648 @default.
- W2550797657 doi "https://doi.org/10.5121/ijaia.2015.6504" @default.
- W2550797657 hasPublicationYear "2015" @default.
- W2550797657 type Work @default.
- W2550797657 sameAs 2550797657 @default.
- W2550797657 citedByCount "8" @default.
- W2550797657 countsByYear W25507976572016 @default.
- W2550797657 countsByYear W25507976572021 @default.
- W2550797657 countsByYear W25507976572022 @default.
- W2550797657 countsByYear W25507976572023 @default.
- W2550797657 crossrefType "journal-article" @default.
- W2550797657 hasAuthorship W2550797657A5065597080 @default.
- W2550797657 hasAuthorship W2550797657A5084934654 @default.
- W2550797657 hasAuthorship W2550797657A5089822866 @default.
- W2550797657 hasBestOaLocation W25507976571 @default.
- W2550797657 hasConcept C119857082 @default.
- W2550797657 hasConcept C134121241 @default.
- W2550797657 hasConcept C154945302 @default.
- W2550797657 hasConcept C191897082 @default.
- W2550797657 hasConcept C192562407 @default.
- W2550797657 hasConcept C41008148 @default.
- W2550797657 hasConcept C50644808 @default.
- W2550797657 hasConceptScore W2550797657C119857082 @default.
- W2550797657 hasConceptScore W2550797657C134121241 @default.
- W2550797657 hasConceptScore W2550797657C154945302 @default.
- W2550797657 hasConceptScore W2550797657C191897082 @default.
- W2550797657 hasConceptScore W2550797657C192562407 @default.
- W2550797657 hasConceptScore W2550797657C41008148 @default.
- W2550797657 hasConceptScore W2550797657C50644808 @default.
- W2550797657 hasIssue "5" @default.
- W2550797657 hasLocation W25507976571 @default.
- W2550797657 hasLocation W25507976572 @default.
- W2550797657 hasOpenAccess W2550797657 @default.
- W2550797657 hasPrimaryLocation W25507976571 @default.
- W2550797657 hasRelatedWork W2386387936 @default.
- W2550797657 hasRelatedWork W2961085424 @default.
- W2550797657 hasRelatedWork W3046775127 @default.
- W2550797657 hasRelatedWork W3170094116 @default.
- W2550797657 hasRelatedWork W4205958290 @default.
- W2550797657 hasRelatedWork W4285260836 @default.
- W2550797657 hasRelatedWork W4286629047 @default.
- W2550797657 hasRelatedWork W4306321456 @default.
- W2550797657 hasRelatedWork W4306674287 @default.
- W2550797657 hasRelatedWork W4224009465 @default.
- W2550797657 hasVolume "6" @default.
- W2550797657 isParatext "false" @default.
- W2550797657 isRetracted "false" @default.
- W2550797657 magId "2550797657" @default.
- W2550797657 workType "article" @default.