Matches in SemOpenAlex for { <https://semopenalex.org/work/W2550797816> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2550797816 endingPage "185" @default.
- W2550797816 startingPage "173" @default.
- W2550797816 abstract "In this paper, we propose a method of human activity recognition with high throughput from raw accelerometer data applying a deep recurrent neural network (DRNN), and investigate various architectures and its combination to find the best parameter values. The “high throughput” refers to short time at a time of recognition. We investigated various parameters and architectures of the DRNN by using the training dataset of 432 trials with 6 activity classes from 7 people. The maximum recognition rate was 95.42% and 83.43% against the test data of 108 segmented trials each of which has single activity class and 18 multiple sequential trials, respectively. Here, the maximum recognition rates by traditional methods were 71.65% and 54.97% for each. In addition, the efficiency of the found parameters was evaluated using additional dataset. Further, as for throughput of the recognition per unit time, the constructed DRNN was requiring only 1.347 ms, while the best traditional method required 11.031 ms which includes 11.027 ms for feature calculation. These advantages are caused by the compact and small architecture of the constructed real time oriented DRNN." @default.
- W2550797816 created "2016-11-30" @default.
- W2550797816 creator A5012968823 @default.
- W2550797816 creator A5034648236 @default.
- W2550797816 creator A5080895628 @default.
- W2550797816 date "2017-12-30" @default.
- W2550797816 modified "2023-10-16" @default.
- W2550797816 title "Deep recurrent neural network for mobile human activity recognition with high throughput" @default.
- W2550797816 cites W1964023646 @default.
- W2550797816 cites W2021717943 @default.
- W2550797816 cites W2023302299 @default.
- W2550797816 cites W2056169469 @default.
- W2550797816 cites W2058635074 @default.
- W2550797816 cites W2064675550 @default.
- W2550797816 cites W2073069519 @default.
- W2550797816 cites W2103388129 @default.
- W2550797816 cites W2105046342 @default.
- W2550797816 cites W2106981652 @default.
- W2550797816 cites W2113746910 @default.
- W2550797816 cites W2115417032 @default.
- W2550797816 cites W2127141656 @default.
- W2550797816 cites W2135090840 @default.
- W2550797816 cites W2137100320 @default.
- W2550797816 cites W2162323205 @default.
- W2550797816 cites W2270470215 @default.
- W2550797816 cites W4255262795 @default.
- W2550797816 doi "https://doi.org/10.1007/s10015-017-0422-x" @default.
- W2550797816 hasPublicationYear "2017" @default.
- W2550797816 type Work @default.
- W2550797816 sameAs 2550797816 @default.
- W2550797816 citedByCount "171" @default.
- W2550797816 countsByYear W25507978162018 @default.
- W2550797816 countsByYear W25507978162019 @default.
- W2550797816 countsByYear W25507978162020 @default.
- W2550797816 countsByYear W25507978162021 @default.
- W2550797816 countsByYear W25507978162022 @default.
- W2550797816 countsByYear W25507978162023 @default.
- W2550797816 crossrefType "journal-article" @default.
- W2550797816 hasAuthorship W2550797816A5012968823 @default.
- W2550797816 hasAuthorship W2550797816A5034648236 @default.
- W2550797816 hasAuthorship W2550797816A5080895628 @default.
- W2550797816 hasBestOaLocation W25507978162 @default.
- W2550797816 hasConcept C108583219 @default.
- W2550797816 hasConcept C138885662 @default.
- W2550797816 hasConcept C147168706 @default.
- W2550797816 hasConcept C153180895 @default.
- W2550797816 hasConcept C154945302 @default.
- W2550797816 hasConcept C157764524 @default.
- W2550797816 hasConcept C2776401178 @default.
- W2550797816 hasConcept C40969351 @default.
- W2550797816 hasConcept C41008148 @default.
- W2550797816 hasConcept C41895202 @default.
- W2550797816 hasConcept C50644808 @default.
- W2550797816 hasConcept C555944384 @default.
- W2550797816 hasConcept C76155785 @default.
- W2550797816 hasConceptScore W2550797816C108583219 @default.
- W2550797816 hasConceptScore W2550797816C138885662 @default.
- W2550797816 hasConceptScore W2550797816C147168706 @default.
- W2550797816 hasConceptScore W2550797816C153180895 @default.
- W2550797816 hasConceptScore W2550797816C154945302 @default.
- W2550797816 hasConceptScore W2550797816C157764524 @default.
- W2550797816 hasConceptScore W2550797816C2776401178 @default.
- W2550797816 hasConceptScore W2550797816C40969351 @default.
- W2550797816 hasConceptScore W2550797816C41008148 @default.
- W2550797816 hasConceptScore W2550797816C41895202 @default.
- W2550797816 hasConceptScore W2550797816C50644808 @default.
- W2550797816 hasConceptScore W2550797816C555944384 @default.
- W2550797816 hasConceptScore W2550797816C76155785 @default.
- W2550797816 hasIssue "2" @default.
- W2550797816 hasLocation W25507978161 @default.
- W2550797816 hasLocation W25507978162 @default.
- W2550797816 hasOpenAccess W2550797816 @default.
- W2550797816 hasPrimaryLocation W25507978161 @default.
- W2550797816 hasRelatedWork W1847088711 @default.
- W2550797816 hasRelatedWork W1889624880 @default.
- W2550797816 hasRelatedWork W2229372569 @default.
- W2550797816 hasRelatedWork W2953061907 @default.
- W2550797816 hasRelatedWork W2964335273 @default.
- W2550797816 hasRelatedWork W3032952384 @default.
- W2550797816 hasRelatedWork W3034302643 @default.
- W2550797816 hasRelatedWork W3036642985 @default.
- W2550797816 hasRelatedWork W4225394202 @default.
- W2550797816 hasRelatedWork W4298287631 @default.
- W2550797816 hasVolume "23" @default.
- W2550797816 isParatext "false" @default.
- W2550797816 isRetracted "false" @default.
- W2550797816 magId "2550797816" @default.
- W2550797816 workType "article" @default.