Matches in SemOpenAlex for { <https://semopenalex.org/work/W2550876601> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2550876601 abstract "Forest fires are a dangerous and devastating phenomenon. Being able to accurately predict the burned area of a forest fire could potentially limit human casualties as well as better prepare for the ensuing economical and ecological damage. A data set from the Montesinho Natural Park in Portugal provides a difficult regression task regarding the prediction of forest fire burn area due to the limited amount of data entries and the right skew nature of the data set. This paper shows how the use of a novel input structure and representation of the data, along with using Particle Swarm Optimization (PSO) instead of Backpropagation to determine weights of an Artificial Neural Network (ANN), improves error rates significantly." @default.
- W2550876601 created "2016-11-30" @default.
- W2550876601 creator A5075565472 @default.
- W2550876601 creator A5084385192 @default.
- W2550876601 date "2016-07-01" @default.
- W2550876601 modified "2023-10-02" @default.
- W2550876601 title "PSO trained Neural Networks for predicting forest fire size: A comparison of implementation and performance" @default.
- W2550876601 cites W1560780183 @default.
- W2550876601 cites W1820051232 @default.
- W2550876601 cites W1870794886 @default.
- W2550876601 cites W191808681 @default.
- W2550876601 cites W1978831934 @default.
- W2550876601 cites W2031592816 @default.
- W2550876601 cites W2069457154 @default.
- W2550876601 cites W2152175008 @default.
- W2550876601 cites W2152195021 @default.
- W2550876601 cites W2170452676 @default.
- W2550876601 cites W2186104583 @default.
- W2550876601 cites W2556989296 @default.
- W2550876601 cites W4301861531 @default.
- W2550876601 doi "https://doi.org/10.1109/ijcnn.2016.7727265" @default.
- W2550876601 hasPublicationYear "2016" @default.
- W2550876601 type Work @default.
- W2550876601 sameAs 2550876601 @default.
- W2550876601 citedByCount "8" @default.
- W2550876601 countsByYear W25508766012018 @default.
- W2550876601 countsByYear W25508766012019 @default.
- W2550876601 countsByYear W25508766012020 @default.
- W2550876601 countsByYear W25508766012021 @default.
- W2550876601 countsByYear W25508766012022 @default.
- W2550876601 countsByYear W25508766012023 @default.
- W2550876601 crossrefType "proceedings-article" @default.
- W2550876601 hasAuthorship W2550876601A5075565472 @default.
- W2550876601 hasAuthorship W2550876601A5084385192 @default.
- W2550876601 hasConcept C105795698 @default.
- W2550876601 hasConcept C119857082 @default.
- W2550876601 hasConcept C124101348 @default.
- W2550876601 hasConcept C127413603 @default.
- W2550876601 hasConcept C154945302 @default.
- W2550876601 hasConcept C155032097 @default.
- W2550876601 hasConcept C177264268 @default.
- W2550876601 hasConcept C199360897 @default.
- W2550876601 hasConcept C201995342 @default.
- W2550876601 hasConcept C2780451532 @default.
- W2550876601 hasConcept C33923547 @default.
- W2550876601 hasConcept C41008148 @default.
- W2550876601 hasConcept C43711488 @default.
- W2550876601 hasConcept C50644808 @default.
- W2550876601 hasConcept C58489278 @default.
- W2550876601 hasConcept C76155785 @default.
- W2550876601 hasConcept C83546350 @default.
- W2550876601 hasConcept C85617194 @default.
- W2550876601 hasConceptScore W2550876601C105795698 @default.
- W2550876601 hasConceptScore W2550876601C119857082 @default.
- W2550876601 hasConceptScore W2550876601C124101348 @default.
- W2550876601 hasConceptScore W2550876601C127413603 @default.
- W2550876601 hasConceptScore W2550876601C154945302 @default.
- W2550876601 hasConceptScore W2550876601C155032097 @default.
- W2550876601 hasConceptScore W2550876601C177264268 @default.
- W2550876601 hasConceptScore W2550876601C199360897 @default.
- W2550876601 hasConceptScore W2550876601C201995342 @default.
- W2550876601 hasConceptScore W2550876601C2780451532 @default.
- W2550876601 hasConceptScore W2550876601C33923547 @default.
- W2550876601 hasConceptScore W2550876601C41008148 @default.
- W2550876601 hasConceptScore W2550876601C43711488 @default.
- W2550876601 hasConceptScore W2550876601C50644808 @default.
- W2550876601 hasConceptScore W2550876601C58489278 @default.
- W2550876601 hasConceptScore W2550876601C76155785 @default.
- W2550876601 hasConceptScore W2550876601C83546350 @default.
- W2550876601 hasConceptScore W2550876601C85617194 @default.
- W2550876601 hasLocation W25508766011 @default.
- W2550876601 hasOpenAccess W2550876601 @default.
- W2550876601 hasPrimaryLocation W25508766011 @default.
- W2550876601 hasRelatedWork W1489050811 @default.
- W2550876601 hasRelatedWork W1622600974 @default.
- W2550876601 hasRelatedWork W1965678419 @default.
- W2550876601 hasRelatedWork W1979695132 @default.
- W2550876601 hasRelatedWork W2107133805 @default.
- W2550876601 hasRelatedWork W2146208087 @default.
- W2550876601 hasRelatedWork W2268483639 @default.
- W2550876601 hasRelatedWork W2358550275 @default.
- W2550876601 hasRelatedWork W2886483809 @default.
- W2550876601 hasRelatedWork W3123533727 @default.
- W2550876601 isParatext "false" @default.
- W2550876601 isRetracted "false" @default.
- W2550876601 magId "2550876601" @default.
- W2550876601 workType "article" @default.