Matches in SemOpenAlex for { <https://semopenalex.org/work/W2550881245> ?p ?o ?g. }
- W2550881245 endingPage "75" @default.
- W2550881245 startingPage "75" @default.
- W2550881245 abstract "Environmental contextSecondary organic aerosol, formed by oxidation of volatile precursors such as monoterpenes, is a major contributor to the total atmospheric organic aerosol. We focus on the online mass spectrometric analysis of the aerosol generated by oxidation products of four major monoterpenes in an environmental chamber. Numerous important monoterpene oxidation products were clearly observed and provided a direct comparison of the formation of biogenic secondary organic aerosols. AbstractWe present here thermal desorption–tunable vacuum ultraviolet time-of-flight photoionisation aerosol mass spectrometry (TD-VUV-TOF-PIAMS) for online analysis of biogenic secondary organic aerosols (BSOAs) formed from OH-initiated photooxidation and dark ozonolysis of α-pinene, β-pinene, Δ3-carene and d-limonene in smog chamber experiments. The ‘soft’ ionisation at near-threshold photon energies (≤10.5eV) used in this study permits direct measurement of the fairly clean mass spectra, facilitating molecular identification. The online BSOA mass spectra compared well with previous offline measurements and most of the important monoterpene oxidation products were clearly found in the online mass spectra. Oxidation products such as monoterpene-derived acids (e.g. pinic acid, pinonic acid, 3-caronic acid, limononic acid, limonalic acid), ketones (e.g. norpinone, limonaketone), aldehydes (e.g. caronaldehyde, norcaronaldehyde, limononaldehyde) and multifunctional organics (e.g. hydroxypinonaldehydes, hydroxy-3-caronic aldehydes, hydroxylimononic acid) were tentatively identified. The online TD-VUV-TOF-PIAMS mass spectra showed that the OH-initiated photooxidation and ozonolysis of the same monoterpenes produced some similar BSOA products; for example, 3-caric acid, 3-caronic acid, 3-norcaronic acid, 3-norcaralic acid, caronaldehyde and norcaronaldehyde were observed in both photooxidation and ozonolysis of Δ3-carene. However, they could be formed through different pathways. Some of the same products and isomers (e.g. 10-oxopinonic acid, pinonic acid, norpinic acid, hydroxyl pinonaldehyde, norpinonic acid, norpinone) were formed during the photooxidation and ozonolysis of α-pinene and β-pinene. However, several different BSOA products were generated in these photooxidation and ozonolysis reactions due to their different parent structures. The OH–monoterpene reaction generated higher-molecular-weight products than O3–monoterpene owing to multiple OH additions to the unsaturated carbon bond. The online observation of key BSOA products provided a direct comparison of BSOA formation among different monoterpenes and insights into the formation pathways in the OH-initiated photooxidation and ozonolysis of monoterpenes." @default.
- W2550881245 created "2016-11-30" @default.
- W2550881245 creator A5021850142 @default.
- W2550881245 creator A5064525936 @default.
- W2550881245 creator A5072915437 @default.
- W2550881245 date "2017-01-01" @default.
- W2550881245 modified "2023-10-18" @default.
- W2550881245 title "Online analysis of secondary organic aerosols from OH-initiated photooxidation and ozonolysis of α-pinene, β-pinene, Δ3-carene and d-limonene by thermal desorption–photoionisation aerosol mass spectrometry" @default.
- W2550881245 cites W1489115544 @default.
- W2550881245 cites W1494737254 @default.
- W2550881245 cites W1521360580 @default.
- W2550881245 cites W1564094774 @default.
- W2550881245 cites W1763560430 @default.
- W2550881245 cites W1948025759 @default.
- W2550881245 cites W1969110847 @default.
- W2550881245 cites W1986418366 @default.
- W2550881245 cites W1995163638 @default.
- W2550881245 cites W1995499409 @default.
- W2550881245 cites W1996735490 @default.
- W2550881245 cites W1998501835 @default.
- W2550881245 cites W2008582554 @default.
- W2550881245 cites W2012855156 @default.
- W2550881245 cites W2013293445 @default.
- W2550881245 cites W2014142222 @default.
- W2550881245 cites W2016269357 @default.
- W2550881245 cites W2020768303 @default.
- W2550881245 cites W2021198116 @default.
- W2550881245 cites W2024602595 @default.
- W2550881245 cites W2045796348 @default.
- W2550881245 cites W2049411469 @default.
- W2550881245 cites W2050026485 @default.
- W2550881245 cites W2050229082 @default.
- W2550881245 cites W2052701607 @default.
- W2550881245 cites W2055302085 @default.
- W2550881245 cites W2057152777 @default.
- W2550881245 cites W2059162191 @default.
- W2550881245 cites W2062107130 @default.
- W2550881245 cites W2065952835 @default.
- W2550881245 cites W2067209936 @default.
- W2550881245 cites W2068680779 @default.
- W2550881245 cites W2073161629 @default.
- W2550881245 cites W2080863685 @default.
- W2550881245 cites W2084524899 @default.
- W2550881245 cites W2084833077 @default.
- W2550881245 cites W2093204787 @default.
- W2550881245 cites W2103487956 @default.
- W2550881245 cites W2109285741 @default.
- W2550881245 cites W2113212697 @default.
- W2550881245 cites W2116507044 @default.
- W2550881245 cites W2127510753 @default.
- W2550881245 cites W2130975189 @default.
- W2550881245 cites W2136405539 @default.
- W2550881245 cites W2138640584 @default.
- W2550881245 cites W2140137657 @default.
- W2550881245 cites W2144117805 @default.
- W2550881245 cites W2162177727 @default.
- W2550881245 cites W2164267194 @default.
- W2550881245 cites W2168916209 @default.
- W2550881245 cites W2320104716 @default.
- W2550881245 cites W2329091731 @default.
- W2550881245 cites W2335048773 @default.
- W2550881245 cites W2335550834 @default.
- W2550881245 cites W2955601895 @default.
- W2550881245 cites W3145393267 @default.
- W2550881245 doi "https://doi.org/10.1071/en16128" @default.
- W2550881245 hasPublicationYear "2017" @default.
- W2550881245 type Work @default.
- W2550881245 sameAs 2550881245 @default.
- W2550881245 citedByCount "18" @default.
- W2550881245 countsByYear W25508812452017 @default.
- W2550881245 countsByYear W25508812452018 @default.
- W2550881245 countsByYear W25508812452019 @default.
- W2550881245 countsByYear W25508812452020 @default.
- W2550881245 countsByYear W25508812452021 @default.
- W2550881245 countsByYear W25508812452022 @default.
- W2550881245 countsByYear W25508812452023 @default.
- W2550881245 crossrefType "journal-article" @default.
- W2550881245 hasAuthorship W2550881245A5021850142 @default.
- W2550881245 hasAuthorship W2550881245A5064525936 @default.
- W2550881245 hasAuthorship W2550881245A5072915437 @default.
- W2550881245 hasConcept C107872376 @default.
- W2550881245 hasConcept C150394285 @default.
- W2550881245 hasConcept C162356407 @default.
- W2550881245 hasConcept C162711632 @default.
- W2550881245 hasConcept C178790620 @default.
- W2550881245 hasConcept C185592680 @default.
- W2550881245 hasConcept C2776134268 @default.
- W2550881245 hasConcept C2777278459 @default.
- W2550881245 hasConcept C2777671706 @default.
- W2550881245 hasConcept C2779173278 @default.
- W2550881245 hasConcept C2779345167 @default.
- W2550881245 hasConcept C2779906576 @default.
- W2550881245 hasConcept C2781059571 @default.
- W2550881245 hasConcept C40325409 @default.
- W2550881245 hasConcept C43617362 @default.
- W2550881245 hasConcept C75473681 @default.
- W2550881245 hasConceptScore W2550881245C107872376 @default.
- W2550881245 hasConceptScore W2550881245C150394285 @default.