Matches in SemOpenAlex for { <https://semopenalex.org/work/W2551151566> ?p ?o ?g. }
- W2551151566 endingPage "127" @default.
- W2551151566 startingPage "121" @default.
- W2551151566 abstract "Radionuclides reach the environment from natural or anthropogenic sources and are equilibrating over time with different phases through sorption and precipitation reactions onto inorganic phases and macromolecular natural organic matter (NOM). Strong binding to NOM can occur by chelation of clustered binding sites (i.e., binding sites from different branches in the macromolecule) in the absence of conventional chelating sites. Despite many years of research and strong evidence of its significance, transport of many radionuclides is still modeled without taking into consideration NOM as a redox regulator and a sorbent or chelating agent. Microbially mediated chelation and incorporation reactions can control a number of radionuclides, e.g., plutonium (Pu) and iodine (I) isotopes, leading to retardation or mobilization, depending on whether the carrier compound is in solution or particle-bound. The presence of NOM in contaminated soils complicates conventional remediation techniques for I, where base has been added to either increase the cation exchange capacity of soils or to promote direct co-precipitation of the cationic radionuclide in the waste stream. Even though Pu at waste sites did not have to be remediated, base addition would likely also bring surprises. This addition may then have unexpected consequences; while promoting the immobilization of inorganic Pu, it has been shown to also remobilize inorganic-I and low-molecular weight organic compounds that are bound to I and Pu. Iodine occurs in multiple oxidation states in aquatic systems, existing not only as inorganic species (iodide (I−) and iodate (IO3−)), but also as organic species where I is covalently bound to aromatic moieties. Thus, stable iodine, 127I, and its long-lived isotope, 129I, a major by-product of nuclear fission, undergo complex biogeochemical cycling in the environment, which renders them less mobile than when assuming that all I is in the form of the highly mobile form of iodide. In the laboratory and the field, plutonium strongly associates with NOM, when present, and is strongly chelated by specific moieties such as hydroxamate siderophores and other N-containing compounds. As a consequence, its mobility is controlled by the transport behavior of the anionic organic forms rather than the much more strongly sorbing cationic form of Pu(IV). NOM, even at trace levels, can play a significant role in controlling the fate and transport of radionuclides." @default.
- W2551151566 created "2016-11-30" @default.
- W2551151566 creator A5007576906 @default.
- W2551151566 creator A5008311338 @default.
- W2551151566 creator A5023426204 @default.
- W2551151566 creator A5034714702 @default.
- W2551151566 creator A5065766565 @default.
- W2551151566 creator A5067699723 @default.
- W2551151566 creator A5071042482 @default.
- W2551151566 date "2017-10-01" @default.
- W2551151566 modified "2023-09-24" @default.
- W2551151566 title "Iodine and plutonium association with natural organic matter: A review of recent advances" @default.
- W2551151566 cites W1533975903 @default.
- W2551151566 cites W1964387843 @default.
- W2551151566 cites W1965233310 @default.
- W2551151566 cites W1966158621 @default.
- W2551151566 cites W1966501752 @default.
- W2551151566 cites W1972964381 @default.
- W2551151566 cites W1979965518 @default.
- W2551151566 cites W2004460050 @default.
- W2551151566 cites W2009607212 @default.
- W2551151566 cites W2011678056 @default.
- W2551151566 cites W2020515714 @default.
- W2551151566 cites W2021182782 @default.
- W2551151566 cites W2033835675 @default.
- W2551151566 cites W2033964304 @default.
- W2551151566 cites W2043573722 @default.
- W2551151566 cites W2045834582 @default.
- W2551151566 cites W2047508976 @default.
- W2551151566 cites W2050661879 @default.
- W2551151566 cites W2052654679 @default.
- W2551151566 cites W2053071817 @default.
- W2551151566 cites W2054377467 @default.
- W2551151566 cites W2057717265 @default.
- W2551151566 cites W2059055405 @default.
- W2551151566 cites W2060577431 @default.
- W2551151566 cites W2060706070 @default.
- W2551151566 cites W2063048504 @default.
- W2551151566 cites W2068255197 @default.
- W2551151566 cites W2070521820 @default.
- W2551151566 cites W2071966471 @default.
- W2551151566 cites W2074097952 @default.
- W2551151566 cites W2076986331 @default.
- W2551151566 cites W2081015261 @default.
- W2551151566 cites W2089983396 @default.
- W2551151566 cites W2094456487 @default.
- W2551151566 cites W2113768184 @default.
- W2551151566 cites W2116594889 @default.
- W2551151566 cites W2138737885 @default.
- W2551151566 cites W2139592921 @default.
- W2551151566 cites W2170020772 @default.
- W2551151566 cites W2170435214 @default.
- W2551151566 cites W2228749599 @default.
- W2551151566 cites W2270011560 @default.
- W2551151566 cites W2312585337 @default.
- W2551151566 cites W2314784119 @default.
- W2551151566 cites W2316580844 @default.
- W2551151566 cites W2317154595 @default.
- W2551151566 cites W2329710090 @default.
- W2551151566 cites W2330403618 @default.
- W2551151566 cites W2331342320 @default.
- W2551151566 cites W2558810050 @default.
- W2551151566 cites W2950435517 @default.
- W2551151566 cites W4376596369 @default.
- W2551151566 doi "https://doi.org/10.1016/j.apgeochem.2016.11.009" @default.
- W2551151566 hasPublicationYear "2017" @default.
- W2551151566 type Work @default.
- W2551151566 sameAs 2551151566 @default.
- W2551151566 citedByCount "34" @default.
- W2551151566 countsByYear W25511515662017 @default.
- W2551151566 countsByYear W25511515662018 @default.
- W2551151566 countsByYear W25511515662019 @default.
- W2551151566 countsByYear W25511515662020 @default.
- W2551151566 countsByYear W25511515662021 @default.
- W2551151566 countsByYear W25511515662022 @default.
- W2551151566 countsByYear W25511515662023 @default.
- W2551151566 crossrefType "journal-article" @default.
- W2551151566 hasAuthorship W2551151566A5007576906 @default.
- W2551151566 hasAuthorship W2551151566A5008311338 @default.
- W2551151566 hasAuthorship W2551151566A5023426204 @default.
- W2551151566 hasAuthorship W2551151566A5034714702 @default.
- W2551151566 hasAuthorship W2551151566A5065766565 @default.
- W2551151566 hasAuthorship W2551151566A5067699723 @default.
- W2551151566 hasAuthorship W2551151566A5071042482 @default.
- W2551151566 hasBestOaLocation W25511515661 @default.
- W2551151566 hasConcept C107054158 @default.
- W2551151566 hasConcept C107872376 @default.
- W2551151566 hasConcept C112570922 @default.
- W2551151566 hasConcept C121332964 @default.
- W2551151566 hasConcept C150394285 @default.
- W2551151566 hasConcept C153294291 @default.
- W2551151566 hasConcept C177322064 @default.
- W2551151566 hasConcept C178790620 @default.
- W2551151566 hasConcept C179104552 @default.
- W2551151566 hasConcept C185592680 @default.
- W2551151566 hasConcept C18903297 @default.
- W2551151566 hasConcept C197404232 @default.
- W2551151566 hasConcept C2778870691 @default.