Matches in SemOpenAlex for { <https://semopenalex.org/work/W2551196233> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2551196233 endingPage "1504" @default.
- W2551196233 startingPage "1499" @default.
- W2551196233 abstract "To solve the drawbacks of constraint-based method for learning Bayesian networks(BN) and the unreliability of the conditional independence(CI) tests as the conditioning sets become too large, this paper proposes a structural learning algorithm based on maximal prime decomposition(MPD). Firstly, MPD technique is used to transform the moral graph of BN into its sub-graphs. Then, only zero order and first order CI tests are used to identify V-structures in part of sub-graphs and takes scoring function searches to optimize local structure, so that the number of conditional independence tests can be decreased. Redundancy tests can be avoided and the time performance can be greatly enhanced. Finally, theoretical and experimental results show that the new algorithm is effective and reasonable." @default.
- W2551196233 created "2016-11-30" @default.
- W2551196233 creator A5027268630 @default.
- W2551196233 creator A5045137489 @default.
- W2551196233 creator A5064006381 @default.
- W2551196233 date "2012-01-01" @default.
- W2551196233 modified "2023-09-27" @default.
- W2551196233 title "Structural learning Bayesian network equivalence classes via maximal prime decomposition" @default.
- W2551196233 cites W1505477995 @default.
- W2551196233 cites W1526097585 @default.
- W2551196233 cites W1568555062 @default.
- W2551196233 cites W1586003574 @default.
- W2551196233 cites W1590398161 @default.
- W2551196233 cites W1973704036 @default.
- W2551196233 cites W1978118491 @default.
- W2551196233 cites W1983690667 @default.
- W2551196233 cites W1991847584 @default.
- W2551196233 cites W2013374740 @default.
- W2551196233 cites W2038661810 @default.
- W2551196233 cites W2040768922 @default.
- W2551196233 cites W2091182563 @default.
- W2551196233 cites W2123838014 @default.
- W2551196233 cites W2137661795 @default.
- W2551196233 cites W2142635246 @default.
- W2551196233 cites W2143451896 @default.
- W2551196233 cites W2151945801 @default.
- W2551196233 cites W2168175751 @default.
- W2551196233 cites W2170112109 @default.
- W2551196233 cites W3149745985 @default.
- W2551196233 cites W3149407881 @default.
- W2551196233 hasPublicationYear "2012" @default.
- W2551196233 type Work @default.
- W2551196233 sameAs 2551196233 @default.
- W2551196233 citedByCount "0" @default.
- W2551196233 crossrefType "journal-article" @default.
- W2551196233 hasAuthorship W2551196233A5027268630 @default.
- W2551196233 hasAuthorship W2551196233A5045137489 @default.
- W2551196233 hasAuthorship W2551196233A5064006381 @default.
- W2551196233 hasConcept C11413529 @default.
- W2551196233 hasConcept C118615104 @default.
- W2551196233 hasConcept C154945302 @default.
- W2551196233 hasConcept C2780069185 @default.
- W2551196233 hasConcept C33724603 @default.
- W2551196233 hasConcept C33923547 @default.
- W2551196233 hasConcept C41008148 @default.
- W2551196233 hasConcept C79772020 @default.
- W2551196233 hasConceptScore W2551196233C11413529 @default.
- W2551196233 hasConceptScore W2551196233C118615104 @default.
- W2551196233 hasConceptScore W2551196233C154945302 @default.
- W2551196233 hasConceptScore W2551196233C2780069185 @default.
- W2551196233 hasConceptScore W2551196233C33724603 @default.
- W2551196233 hasConceptScore W2551196233C33923547 @default.
- W2551196233 hasConceptScore W2551196233C41008148 @default.
- W2551196233 hasConceptScore W2551196233C79772020 @default.
- W2551196233 hasIssue "10" @default.
- W2551196233 hasLocation W25511962331 @default.
- W2551196233 hasOpenAccess W2551196233 @default.
- W2551196233 hasPrimaryLocation W25511962331 @default.
- W2551196233 hasRelatedWork W1486664518 @default.
- W2551196233 hasRelatedWork W1640580225 @default.
- W2551196233 hasRelatedWork W1786064881 @default.
- W2551196233 hasRelatedWork W2014089785 @default.
- W2551196233 hasRelatedWork W2028133264 @default.
- W2551196233 hasRelatedWork W2161521303 @default.
- W2551196233 hasRelatedWork W2201177080 @default.
- W2551196233 hasRelatedWork W2276150832 @default.
- W2551196233 hasRelatedWork W2296101049 @default.
- W2551196233 hasRelatedWork W2521827923 @default.
- W2551196233 hasRelatedWork W2529520435 @default.
- W2551196233 hasRelatedWork W2802117660 @default.
- W2551196233 hasRelatedWork W2949501117 @default.
- W2551196233 hasRelatedWork W2950696215 @default.
- W2551196233 hasRelatedWork W2952797601 @default.
- W2551196233 hasRelatedWork W2969935099 @default.
- W2551196233 hasRelatedWork W3015293812 @default.
- W2551196233 hasRelatedWork W3127524721 @default.
- W2551196233 hasRelatedWork W3210398983 @default.
- W2551196233 hasRelatedWork W3149279159 @default.
- W2551196233 hasVolume "27" @default.
- W2551196233 isParatext "false" @default.
- W2551196233 isRetracted "false" @default.
- W2551196233 magId "2551196233" @default.
- W2551196233 workType "article" @default.