Matches in SemOpenAlex for { <https://semopenalex.org/work/W2551453762> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2551453762 abstract "In this paper, the non-asymptotic counterpart of Shannon capacity is investigated for any discrete input memory-less channel with discrete or continuous output (DIMC). Given any block length n and word error probability ∊, let R n (∊) be the best channel coding rate achievable with the block length n subject to the error probability e. Based on the non-asymptotic equipartition properties (NEP) established recently by Yang and Meng, a quantity δ t, n (∊) is first defined to measure the relative magnitude of error probability ∊ and block length n with respect to a given DIMC and an input distribution t. Then, by combining the non-asymptotic achievability and converse established recently by Yang and Meng via jar decoding, it is shown that, given n and ∊ n (∊) has a with respect to δ t, n (∊), with the first two terms of the expansion being max t [I (t; P)-δ t, n (∊)] = I(t∗;P)−δ t∗, n (∊) for some optimal distribution t∗, and the third order term being O(δ2 t∗, n ) + O(ln n/n). Finally, based on the Taylortype expansion and the non-asymptotic converse, two easy to compute approximation formulas for R n (∊) (dubbed “SO” and “NEP”) are provided. Numerical results show that both the SO and NEP approximation formulas provide reliable and accurate estimation, in contrast with the normal approximation which sometimes falls below achievable bounds and sometimes rises above converses. An important implication arising from the Taylor-type expansion of R n (∊) is that in the practical non-asymptotic regime, the optimal marginal codeword symbol distribution is not necessarily a Shannon capacity achieving distribution." @default.
- W2551453762 created "2016-11-30" @default.
- W2551453762 creator A5002820983 @default.
- W2551453762 creator A5003360183 @default.
- W2551453762 date "2012-10-01" @default.
- W2551453762 modified "2023-09-26" @default.
- W2551453762 title "Channel capacity in the non-asymptotic regime: Taylor-type expansion and computable benchmarks" @default.
- W2551453762 cites W1562349908 @default.
- W2551453762 cites W2041355078 @default.
- W2551453762 cites W2082959213 @default.
- W2551453762 cites W2104340231 @default.
- W2551453762 cites W2106864314 @default.
- W2551453762 cites W2553034426 @default.
- W2551453762 cites W2963361462 @default.
- W2551453762 cites W2154518298 @default.
- W2551453762 doi "https://doi.org/10.1109/allerton.2012.6483230" @default.
- W2551453762 hasPublicationYear "2012" @default.
- W2551453762 type Work @default.
- W2551453762 sameAs 2551453762 @default.
- W2551453762 citedByCount "6" @default.
- W2551453762 countsByYear W25514537622013 @default.
- W2551453762 countsByYear W25514537622014 @default.
- W2551453762 countsByYear W25514537622015 @default.
- W2551453762 crossrefType "proceedings-article" @default.
- W2551453762 hasAuthorship W2551453762A5002820983 @default.
- W2551453762 hasAuthorship W2551453762A5003360183 @default.
- W2551453762 hasConcept C105795698 @default.
- W2551453762 hasConcept C114614502 @default.
- W2551453762 hasConcept C11683690 @default.
- W2551453762 hasConcept C118615104 @default.
- W2551453762 hasConcept C134306372 @default.
- W2551453762 hasConcept C153207627 @default.
- W2551453762 hasConcept C158946198 @default.
- W2551453762 hasConcept C2524010 @default.
- W2551453762 hasConcept C2776809875 @default.
- W2551453762 hasConcept C28826006 @default.
- W2551453762 hasConcept C33923547 @default.
- W2551453762 hasConcept C57273362 @default.
- W2551453762 hasConcept C75438885 @default.
- W2551453762 hasConceptScore W2551453762C105795698 @default.
- W2551453762 hasConceptScore W2551453762C114614502 @default.
- W2551453762 hasConceptScore W2551453762C11683690 @default.
- W2551453762 hasConceptScore W2551453762C118615104 @default.
- W2551453762 hasConceptScore W2551453762C134306372 @default.
- W2551453762 hasConceptScore W2551453762C153207627 @default.
- W2551453762 hasConceptScore W2551453762C158946198 @default.
- W2551453762 hasConceptScore W2551453762C2524010 @default.
- W2551453762 hasConceptScore W2551453762C2776809875 @default.
- W2551453762 hasConceptScore W2551453762C28826006 @default.
- W2551453762 hasConceptScore W2551453762C33923547 @default.
- W2551453762 hasConceptScore W2551453762C57273362 @default.
- W2551453762 hasConceptScore W2551453762C75438885 @default.
- W2551453762 hasLocation W25514537621 @default.
- W2551453762 hasOpenAccess W2551453762 @default.
- W2551453762 hasPrimaryLocation W25514537621 @default.
- W2551453762 hasRelatedWork W118426592 @default.
- W2551453762 hasRelatedWork W1562349908 @default.
- W2551453762 hasRelatedWork W1649527659 @default.
- W2551453762 hasRelatedWork W2031089938 @default.
- W2551453762 hasRelatedWork W2036830251 @default.
- W2551453762 hasRelatedWork W2082959213 @default.
- W2551453762 hasRelatedWork W2099294566 @default.
- W2551453762 hasRelatedWork W2163564240 @default.
- W2551453762 hasRelatedWork W2168382013 @default.
- W2551453762 hasRelatedWork W2170608172 @default.
- W2551453762 hasRelatedWork W2397977086 @default.
- W2551453762 hasRelatedWork W2409828821 @default.
- W2551453762 hasRelatedWork W2552494113 @default.
- W2551453762 hasRelatedWork W2950254659 @default.
- W2551453762 hasRelatedWork W2962912704 @default.
- W2551453762 hasRelatedWork W2963024103 @default.
- W2551453762 hasRelatedWork W3046732434 @default.
- W2551453762 hasRelatedWork W3106027096 @default.
- W2551453762 hasRelatedWork W76199631 @default.
- W2551453762 hasRelatedWork W2089800549 @default.
- W2551453762 isParatext "false" @default.
- W2551453762 isRetracted "false" @default.
- W2551453762 magId "2551453762" @default.
- W2551453762 workType "article" @default.