Matches in SemOpenAlex for { <https://semopenalex.org/work/W2551736451> ?p ?o ?g. }
- W2551736451 endingPage "208" @default.
- W2551736451 startingPage "196" @default.
- W2551736451 abstract "Abstract Aim Ecological niche models ( ENM s) are used widely in ecology, evolution, global change biology, but model uncertainty remains an underappreciated issue. Generally, either a single model from one algorithm or an ensemble of single models from different algorithms is used to provide a prediction. In addition to variability among algorithms, recent studies have shown the need to consider variability within a single algorithm, for example optimizing model complexity by tuning model settings. We present an ensemble ENM using a single‐algorithm approach, while adjusting model settings to maximize performance. Location Madagascar. Methods We used maxent , bioclimatic variables and occurrence records of four species of Malagasy tenrecs (Family Tenrecidae). We calibrated and evaluated preliminary models using a jackknife approach, tuning two model settings to estimate optimal model complexity. We chose a suite of top‐performing preliminary models and then generated a consensus prediction. Furthermore, we calculated the variability among predictions of the co‐optimal models to indicate variation in geography (i.e. uncertainty). We then did the same after projecting the predictions to climatic estimates for the Last Glacial Maximum and the year 2070. Results The default settings were never identified as optimal for any of the four species. The model settings considered as the co‐optimal solutions essentially led to the same evaluation statistics; however, they showed high variation in their geographic predictions for three of the four species. Additionally, variation among such models was greater when transferred across time. Main conclusions This approach likely can provide better predictions for a single algorithm as well as quantifications of within‐algorithm uncertainty, qualities that are highly useful in interpreting reconstructed suitable areas or forecasts of potential range shifts under future climate change. Finally, this within‐algorithm uncertainty can be integrated into a larger framework that considers variability due to other factors (e.g. related to input data, alternate algorithms or various Global circulation models)." @default.
- W2551736451 created "2016-11-30" @default.
- W2551736451 creator A5005792367 @default.
- W2551736451 creator A5014534741 @default.
- W2551736451 creator A5088148391 @default.
- W2551736451 creator A5088966095 @default.
- W2551736451 date "2016-11-21" @default.
- W2551736451 modified "2023-10-16" @default.
- W2551736451 title "A single‐algorithm ensemble approach to estimating suitability and uncertainty: cross‐time projections for four Malagasy tenrecs" @default.
- W2551736451 cites W1513426400 @default.
- W2551736451 cites W1549142192 @default.
- W2551736451 cites W1568201516 @default.
- W2551736451 cites W1783101208 @default.
- W2551736451 cites W1845222285 @default.
- W2551736451 cites W1862251502 @default.
- W2551736451 cites W1966811787 @default.
- W2551736451 cites W1967755652 @default.
- W2551736451 cites W1969126720 @default.
- W2551736451 cites W1985217958 @default.
- W2551736451 cites W1987964272 @default.
- W2551736451 cites W2007049610 @default.
- W2551736451 cites W2010724869 @default.
- W2551736451 cites W2024780423 @default.
- W2551736451 cites W2033686454 @default.
- W2551736451 cites W2044527242 @default.
- W2551736451 cites W2046577517 @default.
- W2551736451 cites W2052030669 @default.
- W2551736451 cites W2056868695 @default.
- W2551736451 cites W2065217782 @default.
- W2551736451 cites W2068211709 @default.
- W2551736451 cites W2078720475 @default.
- W2551736451 cites W2081334206 @default.
- W2551736451 cites W2092141482 @default.
- W2551736451 cites W209407419 @default.
- W2551736451 cites W2097054682 @default.
- W2551736451 cites W2104671064 @default.
- W2551736451 cites W2107695795 @default.
- W2551736451 cites W2110888553 @default.
- W2551736451 cites W2111796869 @default.
- W2551736451 cites W2112315008 @default.
- W2551736451 cites W2112776483 @default.
- W2551736451 cites W2115256358 @default.
- W2551736451 cites W2121285138 @default.
- W2551736451 cites W2123170022 @default.
- W2551736451 cites W2125118617 @default.
- W2551736451 cites W2130032855 @default.
- W2551736451 cites W2135004835 @default.
- W2551736451 cites W2139416101 @default.
- W2551736451 cites W2142733079 @default.
- W2551736451 cites W2151940493 @default.
- W2551736451 cites W2153490924 @default.
- W2551736451 cites W2154160829 @default.
- W2551736451 cites W2168997286 @default.
- W2551736451 cites W2172138805 @default.
- W2551736451 cites W2915360072 @default.
- W2551736451 cites W4238927159 @default.
- W2551736451 cites W4255687173 @default.
- W2551736451 cites W769592261 @default.
- W2551736451 doi "https://doi.org/10.1111/ddi.12510" @default.
- W2551736451 hasPublicationYear "2016" @default.
- W2551736451 type Work @default.
- W2551736451 sameAs 2551736451 @default.
- W2551736451 citedByCount "19" @default.
- W2551736451 countsByYear W25517364512017 @default.
- W2551736451 countsByYear W25517364512018 @default.
- W2551736451 countsByYear W25517364512019 @default.
- W2551736451 countsByYear W25517364512020 @default.
- W2551736451 countsByYear W25517364512021 @default.
- W2551736451 countsByYear W25517364512022 @default.
- W2551736451 countsByYear W25517364512023 @default.
- W2551736451 crossrefType "journal-article" @default.
- W2551736451 hasAuthorship W2551736451A5005792367 @default.
- W2551736451 hasAuthorship W2551736451A5014534741 @default.
- W2551736451 hasAuthorship W2551736451A5088148391 @default.
- W2551736451 hasAuthorship W2551736451A5088966095 @default.
- W2551736451 hasBestOaLocation W25517364511 @default.
- W2551736451 hasConcept C102715595 @default.
- W2551736451 hasConcept C103215972 @default.
- W2551736451 hasConcept C105795698 @default.
- W2551736451 hasConcept C11413529 @default.
- W2551736451 hasConcept C121332964 @default.
- W2551736451 hasConcept C185429906 @default.
- W2551736451 hasConcept C185933670 @default.
- W2551736451 hasConcept C18903297 @default.
- W2551736451 hasConcept C2778334786 @default.
- W2551736451 hasConcept C33923547 @default.
- W2551736451 hasConcept C41008148 @default.
- W2551736451 hasConcept C44870925 @default.
- W2551736451 hasConcept C81790035 @default.
- W2551736451 hasConcept C86803240 @default.
- W2551736451 hasConceptScore W2551736451C102715595 @default.
- W2551736451 hasConceptScore W2551736451C103215972 @default.
- W2551736451 hasConceptScore W2551736451C105795698 @default.
- W2551736451 hasConceptScore W2551736451C11413529 @default.
- W2551736451 hasConceptScore W2551736451C121332964 @default.
- W2551736451 hasConceptScore W2551736451C185429906 @default.
- W2551736451 hasConceptScore W2551736451C185933670 @default.
- W2551736451 hasConceptScore W2551736451C18903297 @default.