Matches in SemOpenAlex for { <https://semopenalex.org/work/W2551940739> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W2551940739 endingPage "351" @default.
- W2551940739 startingPage "351" @default.
- W2551940739 abstract "This book offers a solution to more intuitive problems in these areas. These solutions allow computers to learn from experience and understand the world in terms of a hierarchy of concepts, with each concept defined in terms of its relationship to simpler concepts. By gathering knowledge from experience, this approach avoids the need for human operators to specify formally all of the knowledge needed by the computer. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones. If the authors draw a graph to show how these concepts have been built on top of each other, the graph will be deep, with many layers. For this reason, the authors call this approach “AI Deep Learning.”" @default.
- W2551940739 created "2016-11-30" @default.
- W2551940739 creator A5073765158 @default.
- W2551940739 date "2016-01-01" @default.
- W2551940739 modified "2023-09-30" @default.
- W2551940739 title "Book Review: Deep Learning" @default.
- W2551940739 cites W1498436455 @default.
- W2551940739 cites W1993845689 @default.
- W2551940739 cites W2141504882 @default.
- W2551940739 doi "https://doi.org/10.4258/hir.2016.22.4.351" @default.
- W2551940739 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5116548" @default.
- W2551940739 hasPublicationYear "2016" @default.
- W2551940739 type Work @default.
- W2551940739 sameAs 2551940739 @default.
- W2551940739 citedByCount "78" @default.
- W2551940739 countsByYear W25519407392017 @default.
- W2551940739 countsByYear W25519407392019 @default.
- W2551940739 countsByYear W25519407392020 @default.
- W2551940739 countsByYear W25519407392021 @default.
- W2551940739 countsByYear W25519407392022 @default.
- W2551940739 countsByYear W25519407392023 @default.
- W2551940739 crossrefType "journal-article" @default.
- W2551940739 hasAuthorship W2551940739A5073765158 @default.
- W2551940739 hasBestOaLocation W25519407391 @default.
- W2551940739 hasConcept C108583219 @default.
- W2551940739 hasConcept C154945302 @default.
- W2551940739 hasConcept C2522767166 @default.
- W2551940739 hasConcept C41008148 @default.
- W2551940739 hasConceptScore W2551940739C108583219 @default.
- W2551940739 hasConceptScore W2551940739C154945302 @default.
- W2551940739 hasConceptScore W2551940739C2522767166 @default.
- W2551940739 hasConceptScore W2551940739C41008148 @default.
- W2551940739 hasIssue "4" @default.
- W2551940739 hasLocation W25519407391 @default.
- W2551940739 hasLocation W25519407392 @default.
- W2551940739 hasLocation W25519407393 @default.
- W2551940739 hasOpenAccess W2551940739 @default.
- W2551940739 hasPrimaryLocation W25519407391 @default.
- W2551940739 hasRelatedWork W2126887587 @default.
- W2551940739 hasRelatedWork W2731899572 @default.
- W2551940739 hasRelatedWork W2939353110 @default.
- W2551940739 hasRelatedWork W2941846814 @default.
- W2551940739 hasRelatedWork W2948658236 @default.
- W2551940739 hasRelatedWork W3009238340 @default.
- W2551940739 hasRelatedWork W3118091236 @default.
- W2551940739 hasRelatedWork W3215138031 @default.
- W2551940739 hasRelatedWork W4230611425 @default.
- W2551940739 hasRelatedWork W4312962853 @default.
- W2551940739 hasVolume "22" @default.
- W2551940739 isParatext "false" @default.
- W2551940739 isRetracted "false" @default.
- W2551940739 magId "2551940739" @default.
- W2551940739 workType "article" @default.