Matches in SemOpenAlex for { <https://semopenalex.org/work/W2551975923> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2551975923 endingPage "415" @default.
- W2551975923 startingPage "401" @default.
- W2551975923 abstract "Missing values are a common issue in many real-world datasets, and therefore coping with such datasets is an essential requirement of classification since inadequate treatment of missing values often leads to large classification errors. One of the most popular ways to address incomplete data is to use imputation methods to fill missing fields with plausible values. Multiple imputation, which fills each missing field with a set of plausible values, is a powerful approach to dealing with incomplete data, but is mainly used for statistical analysis. Ensemble learning which constructs a set of classifiers instead of one classifier has proven capable of improving classification accuracy, but has been mainly applied to complete data. This paper proposes a combination of multiple imputation and ensemble learning to build an ensemble of classifiers for incomplete data classification tasks. A multiple imputation method is used to generate a set of diverse imputed datasets which is then used to build a set of diverse classifiers. Experiments on ten benchmark datasets use a decision tree as classification algorithm and compare the proposed approach with two other popular approaches to dealing with incomplete data. The results show that, in almost all cases, the proposed method achieves significantly better classification accuracy than the other methods." @default.
- W2551975923 created "2016-11-30" @default.
- W2551975923 creator A5034493423 @default.
- W2551975923 creator A5043334999 @default.
- W2551975923 creator A5051439492 @default.
- W2551975923 creator A5064651987 @default.
- W2551975923 creator A5077569089 @default.
- W2551975923 date "2016-11-09" @default.
- W2551975923 modified "2023-10-16" @default.
- W2551975923 title "Multiple Imputation and Ensemble Learning for Classification with Incomplete Data" @default.
- W2551975923 cites W1503779619 @default.
- W2551975923 cites W1534477342 @default.
- W2551975923 cites W1990086013 @default.
- W2551975923 cites W2100805904 @default.
- W2551975923 cites W2102720558 @default.
- W2551975923 cites W2114112206 @default.
- W2551975923 cites W2115098571 @default.
- W2551975923 cites W2128152410 @default.
- W2551975923 cites W2133990480 @default.
- W2551975923 cites W2134843796 @default.
- W2551975923 cites W2146332392 @default.
- W2551975923 cites W2151004739 @default.
- W2551975923 cites W2156267802 @default.
- W2551975923 cites W2160931414 @default.
- W2551975923 cites W2345812093 @default.
- W2551975923 doi "https://doi.org/10.1007/978-3-319-49049-6_29" @default.
- W2551975923 hasPublicationYear "2016" @default.
- W2551975923 type Work @default.
- W2551975923 sameAs 2551975923 @default.
- W2551975923 citedByCount "11" @default.
- W2551975923 countsByYear W25519759232017 @default.
- W2551975923 countsByYear W25519759232018 @default.
- W2551975923 countsByYear W25519759232020 @default.
- W2551975923 countsByYear W25519759232021 @default.
- W2551975923 countsByYear W25519759232022 @default.
- W2551975923 crossrefType "book-chapter" @default.
- W2551975923 hasAuthorship W2551975923A5034493423 @default.
- W2551975923 hasAuthorship W2551975923A5043334999 @default.
- W2551975923 hasAuthorship W2551975923A5051439492 @default.
- W2551975923 hasAuthorship W2551975923A5064651987 @default.
- W2551975923 hasAuthorship W2551975923A5077569089 @default.
- W2551975923 hasConcept C119857082 @default.
- W2551975923 hasConcept C124101348 @default.
- W2551975923 hasConcept C153180895 @default.
- W2551975923 hasConcept C154945302 @default.
- W2551975923 hasConcept C41008148 @default.
- W2551975923 hasConcept C45942800 @default.
- W2551975923 hasConcept C58041806 @default.
- W2551975923 hasConcept C84525736 @default.
- W2551975923 hasConcept C9357733 @default.
- W2551975923 hasConcept C95623464 @default.
- W2551975923 hasConceptScore W2551975923C119857082 @default.
- W2551975923 hasConceptScore W2551975923C124101348 @default.
- W2551975923 hasConceptScore W2551975923C153180895 @default.
- W2551975923 hasConceptScore W2551975923C154945302 @default.
- W2551975923 hasConceptScore W2551975923C41008148 @default.
- W2551975923 hasConceptScore W2551975923C45942800 @default.
- W2551975923 hasConceptScore W2551975923C58041806 @default.
- W2551975923 hasConceptScore W2551975923C84525736 @default.
- W2551975923 hasConceptScore W2551975923C9357733 @default.
- W2551975923 hasConceptScore W2551975923C95623464 @default.
- W2551975923 hasLocation W25519759231 @default.
- W2551975923 hasOpenAccess W2551975923 @default.
- W2551975923 hasPrimaryLocation W25519759231 @default.
- W2551975923 hasRelatedWork W1574575415 @default.
- W2551975923 hasRelatedWork W2024529227 @default.
- W2551975923 hasRelatedWork W2081476516 @default.
- W2551975923 hasRelatedWork W2181530120 @default.
- W2551975923 hasRelatedWork W2581984549 @default.
- W2551975923 hasRelatedWork W3028371478 @default.
- W2551975923 hasRelatedWork W3144172081 @default.
- W2551975923 hasRelatedWork W3179858851 @default.
- W2551975923 hasRelatedWork W4211215373 @default.
- W2551975923 hasRelatedWork W3123177881 @default.
- W2551975923 isParatext "false" @default.
- W2551975923 isRetracted "false" @default.
- W2551975923 magId "2551975923" @default.
- W2551975923 workType "book-chapter" @default.