Matches in SemOpenAlex for { <https://semopenalex.org/work/W2552035541> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2552035541 endingPage "5422" @default.
- W2552035541 startingPage "5414" @default.
- W2552035541 abstract "The use of digital images could be a faster and cheaper alternative technique to assess BW, HCW, and body composition of beef cattle. The objective of this study was to develop equations to predict body and carcass weight and body fat content of young bulls using digital images obtained through a Microsoft Kinect device. Thirty-five bulls with an initial BW of 383 (±5.38) kg (20 Black Angus, 390 [±7.48] kg initial BW, and 15 Nellore, 377 [±8.66] kg initial BW) were used. The Kinect sensor, installed on the top of a cattle chute, was used to take infrared light-based depth videos, recorded before the slaughter. For each animal, a quality control was made, running and pausing the video at the moment that the animal was standing with its body and head in line. One frame from recorded videos was selected and used to analyze the following body measurements: chest width, thorax width, abdomen width, body length, dorsal height, and dorsal area. From these body measurements, 23 indexes were generated and tested as potential predictors. The BW and HCW were assessed with a digital scale, whereas empty body fat (EBF) was estimated through ground samples of all tissues. To better understand the relationship among the measurements, the correlations between final BW (488 [±10.4] kg), HCW (287 [±12.5] kg), EBF (14 [±0.610] % empty BW) content, body measurements (taken through digital images), and developed indexes were evaluated. The REG procedure was used to develop the regressions, and the important independent variables were identified using the options STEPWISE and Mallow's Cp in the SELECTION statement. Chest width was the trait most related to weights and the correlations between this measurement and BW and HCW were above 0.85. The analysis of linear regressions between observed and predicted values showed that all models pass through the origin and have a slope of unity (null hypothesis [H]: = 0 and = 1; ≥ 0.993). The models to estimate BW and HCW of Angus and Nellore presented between 0.69 and 0.84 ( < 0.001), whereas from equations to estimate the EBF were lower ( = 0.43-0.45; ≤ 0.006). Index I5 [(chest width) × body length], related to the animal volume, was significant in all models created to estimate BW and HCW, and it explained more than 70% of the variation. This study indicates that digital images taken through a Microsoft Kinect system have the potential to be used as a tool to estimate body and carcass weight of beef cattle." @default.
- W2552035541 created "2016-11-30" @default.
- W2552035541 creator A5001808078 @default.
- W2552035541 creator A5013829122 @default.
- W2552035541 creator A5018178508 @default.
- W2552035541 creator A5039315272 @default.
- W2552035541 creator A5067461417 @default.
- W2552035541 creator A5084743520 @default.
- W2552035541 date "2016-12-01" @default.
- W2552035541 modified "2023-10-13" @default.
- W2552035541 title "Technical note: Estimating body weight and body composition of beef cattle trough digital image analysis1" @default.
- W2552035541 cites W1507360767 @default.
- W2552035541 cites W1880130448 @default.
- W2552035541 cites W1972630283 @default.
- W2552035541 cites W1985032256 @default.
- W2552035541 cites W2025172297 @default.
- W2552035541 cites W2029988511 @default.
- W2552035541 cites W2031777275 @default.
- W2552035541 cites W2046031258 @default.
- W2552035541 cites W2097140939 @default.
- W2552035541 doi "https://doi.org/10.2527/jas.2016-0797" @default.
- W2552035541 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28046161" @default.
- W2552035541 hasPublicationYear "2016" @default.
- W2552035541 type Work @default.
- W2552035541 sameAs 2552035541 @default.
- W2552035541 citedByCount "55" @default.
- W2552035541 countsByYear W25520355412017 @default.
- W2552035541 countsByYear W25520355412018 @default.
- W2552035541 countsByYear W25520355412019 @default.
- W2552035541 countsByYear W25520355412020 @default.
- W2552035541 countsByYear W25520355412021 @default.
- W2552035541 countsByYear W25520355412022 @default.
- W2552035541 countsByYear W25520355412023 @default.
- W2552035541 crossrefType "journal-article" @default.
- W2552035541 hasAuthorship W2552035541A5001808078 @default.
- W2552035541 hasAuthorship W2552035541A5013829122 @default.
- W2552035541 hasAuthorship W2552035541A5018178508 @default.
- W2552035541 hasAuthorship W2552035541A5039315272 @default.
- W2552035541 hasAuthorship W2552035541A5067461417 @default.
- W2552035541 hasAuthorship W2552035541A5084743520 @default.
- W2552035541 hasConcept C105702510 @default.
- W2552035541 hasConcept C126322002 @default.
- W2552035541 hasConcept C140530291 @default.
- W2552035541 hasConcept C140793950 @default.
- W2552035541 hasConcept C147583825 @default.
- W2552035541 hasConcept C2780505807 @default.
- W2552035541 hasConcept C33923547 @default.
- W2552035541 hasConcept C71924100 @default.
- W2552035541 hasConcept C86803240 @default.
- W2552035541 hasConceptScore W2552035541C105702510 @default.
- W2552035541 hasConceptScore W2552035541C126322002 @default.
- W2552035541 hasConceptScore W2552035541C140530291 @default.
- W2552035541 hasConceptScore W2552035541C140793950 @default.
- W2552035541 hasConceptScore W2552035541C147583825 @default.
- W2552035541 hasConceptScore W2552035541C2780505807 @default.
- W2552035541 hasConceptScore W2552035541C33923547 @default.
- W2552035541 hasConceptScore W2552035541C71924100 @default.
- W2552035541 hasConceptScore W2552035541C86803240 @default.
- W2552035541 hasFunder F4320321091 @default.
- W2552035541 hasFunder F4320322025 @default.
- W2552035541 hasFunder F4320322980 @default.
- W2552035541 hasIssue "12" @default.
- W2552035541 hasLocation W25520355411 @default.
- W2552035541 hasLocation W25520355412 @default.
- W2552035541 hasOpenAccess W2552035541 @default.
- W2552035541 hasPrimaryLocation W25520355411 @default.
- W2552035541 hasRelatedWork W139075421 @default.
- W2552035541 hasRelatedWork W2078831818 @default.
- W2552035541 hasRelatedWork W2084359406 @default.
- W2552035541 hasRelatedWork W2351208897 @default.
- W2552035541 hasRelatedWork W2404221224 @default.
- W2552035541 hasRelatedWork W2751122690 @default.
- W2552035541 hasRelatedWork W2998009622 @default.
- W2552035541 hasRelatedWork W4383742726 @default.
- W2552035541 hasRelatedWork W2181457918 @default.
- W2552035541 hasRelatedWork W2600077284 @default.
- W2552035541 hasVolume "94" @default.
- W2552035541 isParatext "false" @default.
- W2552035541 isRetracted "false" @default.
- W2552035541 magId "2552035541" @default.
- W2552035541 workType "article" @default.