Matches in SemOpenAlex for { <https://semopenalex.org/work/W2552204624> ?p ?o ?g. }
- W2552204624 endingPage "866" @default.
- W2552204624 startingPage "853" @default.
- W2552204624 abstract "In this paper, we 1) provide a real nursing data set for mobile activity recognition that can be used for supervised machine learning, 2) provide big data combined with the patient medical records and sensors attempted for 2 years, and also 3) propose a method for recognizing activities for a whole day utilizing prior knowledge about the activity segments in a day. Furthermore, we demonstrate data mining by applying our method to the bigger data with additional hospital data. In the proposed method, we 1) convert a set of segment timestamps into a prior probability of the activity segment by exploiting the concept of importance sampling, 2) obtain the likelihood of traditional recognition methods for each local time window within the segment range, and, 3) apply Bayesian estimation by marginalizing the conditional probability of estimating the activities for the segment samples. By evaluating with the dataset, the proposed method outperformed the traditional method without using the prior knowledge by 25.81% at maximum by a balanced classification rate, and outperformed by 6.5% the F-measure with accepting 1 hour of margin. Moreover, the proposed method significantly reduces duration errors of activity segments from 324.2 seconds of the traditional method to 74.6 seconds at maximum. We also demonstrate the data mining by applying our method to bigger data in a hospital." @default.
- W2552204624 created "2016-11-30" @default.
- W2552204624 creator A5007176673 @default.
- W2552204624 creator A5040204315 @default.
- W2552204624 creator A5075399730 @default.
- W2552204624 creator A5080895628 @default.
- W2552204624 date "2016-01-01" @default.
- W2552204624 modified "2023-10-16" @default.
- W2552204624 title "Recognizing and Understanding Nursing Activities for a Whole Day with a Big Dataset" @default.
- W2552204624 cites W1555009096 @default.
- W2552204624 cites W1571754581 @default.
- W2552204624 cites W1853486234 @default.
- W2552204624 cites W1912982817 @default.
- W2552204624 cites W1969307352 @default.
- W2552204624 cites W1973221871 @default.
- W2552204624 cites W2003792585 @default.
- W2552204624 cites W2005102860 @default.
- W2552204624 cites W2017634428 @default.
- W2552204624 cites W2021717943 @default.
- W2552204624 cites W2036407878 @default.
- W2552204624 cites W2050836750 @default.
- W2552204624 cites W2058237037 @default.
- W2552204624 cites W2058602280 @default.
- W2552204624 cites W2058635074 @default.
- W2552204624 cites W2059732136 @default.
- W2552204624 cites W2070849598 @default.
- W2552204624 cites W2073069519 @default.
- W2552204624 cites W2073401630 @default.
- W2552204624 cites W2095844239 @default.
- W2552204624 cites W2098043650 @default.
- W2552204624 cites W2102541915 @default.
- W2552204624 cites W2103388129 @default.
- W2552204624 cites W2104471998 @default.
- W2552204624 cites W2110506633 @default.
- W2552204624 cites W2113746910 @default.
- W2552204624 cites W2118978333 @default.
- W2552204624 cites W2119479037 @default.
- W2552204624 cites W2123277412 @default.
- W2552204624 cites W2124690460 @default.
- W2552204624 cites W2126511896 @default.
- W2552204624 cites W2127095067 @default.
- W2552204624 cites W2137100320 @default.
- W2552204624 cites W2145550673 @default.
- W2552204624 cites W2149209973 @default.
- W2552204624 cites W2152587002 @default.
- W2552204624 cites W2158698691 @default.
- W2552204624 cites W2160734758 @default.
- W2552204624 cites W2165491385 @default.
- W2552204624 cites W2166712377 @default.
- W2552204624 cites W2170413589 @default.
- W2552204624 cites W2170724010 @default.
- W2552204624 cites W2172256479 @default.
- W2552204624 cites W2217911647 @default.
- W2552204624 cites W2534335869 @default.
- W2552204624 cites W2616891418 @default.
- W2552204624 cites W2958598236 @default.
- W2552204624 cites W4234046016 @default.
- W2552204624 cites W4245066853 @default.
- W2552204624 cites W4250059583 @default.
- W2552204624 cites W4255262795 @default.
- W2552204624 cites W69249895 @default.
- W2552204624 doi "https://doi.org/10.2197/ipsjjip.24.853" @default.
- W2552204624 hasPublicationYear "2016" @default.
- W2552204624 type Work @default.
- W2552204624 sameAs 2552204624 @default.
- W2552204624 citedByCount "12" @default.
- W2552204624 countsByYear W25522046242018 @default.
- W2552204624 countsByYear W25522046242019 @default.
- W2552204624 countsByYear W25522046242020 @default.
- W2552204624 countsByYear W25522046242021 @default.
- W2552204624 countsByYear W25522046242022 @default.
- W2552204624 crossrefType "journal-article" @default.
- W2552204624 hasAuthorship W2552204624A5007176673 @default.
- W2552204624 hasAuthorship W2552204624A5040204315 @default.
- W2552204624 hasAuthorship W2552204624A5075399730 @default.
- W2552204624 hasAuthorship W2552204624A5080895628 @default.
- W2552204624 hasBestOaLocation W25522046241 @default.
- W2552204624 hasConcept C105795698 @default.
- W2552204624 hasConcept C107673813 @default.
- W2552204624 hasConcept C113954288 @default.
- W2552204624 hasConcept C119857082 @default.
- W2552204624 hasConcept C12267149 @default.
- W2552204624 hasConcept C124101348 @default.
- W2552204624 hasConcept C153180895 @default.
- W2552204624 hasConcept C154945302 @default.
- W2552204624 hasConcept C177264268 @default.
- W2552204624 hasConcept C199360897 @default.
- W2552204624 hasConcept C2780009758 @default.
- W2552204624 hasConcept C33923547 @default.
- W2552204624 hasConcept C38652104 @default.
- W2552204624 hasConcept C41008148 @default.
- W2552204624 hasConcept C44492722 @default.
- W2552204624 hasConcept C52001869 @default.
- W2552204624 hasConcept C58489278 @default.
- W2552204624 hasConcept C75684735 @default.
- W2552204624 hasConcept C774472 @default.
- W2552204624 hasConceptScore W2552204624C105795698 @default.
- W2552204624 hasConceptScore W2552204624C107673813 @default.