Matches in SemOpenAlex for { <https://semopenalex.org/work/W2552742471> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2552742471 abstract "A study is presented comparing the effectiveness of unsupervised feature representations with handcrafted features for cattle behaviour classification. Precision management of cattle requires the interaction of individual animals to be continuously monitored on the farm. Consequently, classifiers are trained to infer the behaviour of the animals using the observations from the sensors that are fitted upon them. Historically, domain knowledge drives the generation of features for cattle behaviour classifiers. When new behaviours are introduced into the system, however, it is often necessary to modify the feature set; this requires additional design and more data. Autoencoders, on the other hand, can skip this design step by learning a common, unsupervised feature representation for training. Whilst stacked autoencoders successfully represent structured data including speech, language and images, deep networks have not been used to model cattle motion. Hence, we investigate using a stacked autoencoder to learn a feature representation for cattle behaviour classification. Experimental results demonstrate that the autoencoder features perform reasonably well in comparison to the statistical features that are selected using prior knowledge of behaviour motion." @default.
- W2552742471 created "2016-11-30" @default.
- W2552742471 creator A5000151716 @default.
- W2552742471 creator A5001910875 @default.
- W2552742471 creator A5002939559 @default.
- W2552742471 creator A5061719316 @default.
- W2552742471 creator A5081269012 @default.
- W2552742471 creator A5087940284 @default.
- W2552742471 date "2016-07-01" @default.
- W2552742471 modified "2023-10-08" @default.
- W2552742471 title "A comparison of autoencoder and statistical features for cattle behaviour classification" @default.
- W2552742471 cites W1970846720 @default.
- W2552742471 cites W2024341973 @default.
- W2552742471 cites W2050365465 @default.
- W2552742471 cites W2056513814 @default.
- W2552742471 cites W2060233119 @default.
- W2552742471 cites W2076027339 @default.
- W2552742471 cites W2086459441 @default.
- W2552742471 cites W2153635508 @default.
- W2552742471 cites W2163922914 @default.
- W2552742471 cites W2249397487 @default.
- W2552742471 doi "https://doi.org/10.1109/ijcnn.2016.7727573" @default.
- W2552742471 hasPublicationYear "2016" @default.
- W2552742471 type Work @default.
- W2552742471 sameAs 2552742471 @default.
- W2552742471 citedByCount "13" @default.
- W2552742471 countsByYear W25527424712016 @default.
- W2552742471 countsByYear W25527424712017 @default.
- W2552742471 countsByYear W25527424712018 @default.
- W2552742471 countsByYear W25527424712020 @default.
- W2552742471 countsByYear W25527424712021 @default.
- W2552742471 countsByYear W25527424712022 @default.
- W2552742471 countsByYear W25527424712023 @default.
- W2552742471 crossrefType "proceedings-article" @default.
- W2552742471 hasAuthorship W2552742471A5000151716 @default.
- W2552742471 hasAuthorship W2552742471A5001910875 @default.
- W2552742471 hasAuthorship W2552742471A5002939559 @default.
- W2552742471 hasAuthorship W2552742471A5061719316 @default.
- W2552742471 hasAuthorship W2552742471A5081269012 @default.
- W2552742471 hasAuthorship W2552742471A5087940284 @default.
- W2552742471 hasConcept C101738243 @default.
- W2552742471 hasConcept C119857082 @default.
- W2552742471 hasConcept C138885662 @default.
- W2552742471 hasConcept C153180895 @default.
- W2552742471 hasConcept C154945302 @default.
- W2552742471 hasConcept C17744445 @default.
- W2552742471 hasConcept C199539241 @default.
- W2552742471 hasConcept C2776359362 @default.
- W2552742471 hasConcept C2776401178 @default.
- W2552742471 hasConcept C41008148 @default.
- W2552742471 hasConcept C41895202 @default.
- W2552742471 hasConcept C50644808 @default.
- W2552742471 hasConcept C52622490 @default.
- W2552742471 hasConcept C59404180 @default.
- W2552742471 hasConcept C8038995 @default.
- W2552742471 hasConcept C83665646 @default.
- W2552742471 hasConcept C94625758 @default.
- W2552742471 hasConceptScore W2552742471C101738243 @default.
- W2552742471 hasConceptScore W2552742471C119857082 @default.
- W2552742471 hasConceptScore W2552742471C138885662 @default.
- W2552742471 hasConceptScore W2552742471C153180895 @default.
- W2552742471 hasConceptScore W2552742471C154945302 @default.
- W2552742471 hasConceptScore W2552742471C17744445 @default.
- W2552742471 hasConceptScore W2552742471C199539241 @default.
- W2552742471 hasConceptScore W2552742471C2776359362 @default.
- W2552742471 hasConceptScore W2552742471C2776401178 @default.
- W2552742471 hasConceptScore W2552742471C41008148 @default.
- W2552742471 hasConceptScore W2552742471C41895202 @default.
- W2552742471 hasConceptScore W2552742471C50644808 @default.
- W2552742471 hasConceptScore W2552742471C52622490 @default.
- W2552742471 hasConceptScore W2552742471C59404180 @default.
- W2552742471 hasConceptScore W2552742471C8038995 @default.
- W2552742471 hasConceptScore W2552742471C83665646 @default.
- W2552742471 hasConceptScore W2552742471C94625758 @default.
- W2552742471 hasLocation W25527424711 @default.
- W2552742471 hasOpenAccess W2552742471 @default.
- W2552742471 hasPrimaryLocation W25527424711 @default.
- W2552742471 hasRelatedWork W2546942002 @default.
- W2552742471 hasRelatedWork W2592385986 @default.
- W2552742471 hasRelatedWork W2604440528 @default.
- W2552742471 hasRelatedWork W2772780115 @default.
- W2552742471 hasRelatedWork W2775464024 @default.
- W2552742471 hasRelatedWork W2776466379 @default.
- W2552742471 hasRelatedWork W2785535669 @default.
- W2552742471 hasRelatedWork W2902482704 @default.
- W2552742471 hasRelatedWork W2951611821 @default.
- W2552742471 hasRelatedWork W3197541072 @default.
- W2552742471 isParatext "false" @default.
- W2552742471 isRetracted "false" @default.
- W2552742471 magId "2552742471" @default.
- W2552742471 workType "article" @default.