Matches in SemOpenAlex for { <https://semopenalex.org/work/W2552912985> ?p ?o ?g. }
- W2552912985 endingPage "1802" @default.
- W2552912985 startingPage "1783" @default.
- W2552912985 abstract "Abstract. Cloud Doppler radars are increasingly used to study cloud and precipitation microphysical processes. Typical bulk cloud properties such as liquid or ice content are usually derived using the first three standard moments of the radar Doppler spectrum. Recent studies demonstrated the value of higher moments for the reduction of retrieval uncertainties and for providing additional insights into microphysical processes. Large effort has been undertaken, e.g., within the Atmospheric Radiation Measurement (ARM) program to ensure high quality of radar Doppler spectra. However, a systematic approach concerning the accuracy of higher moment estimates and sensitivity to basic radar system settings, such as spectral resolution, integration time and beam width, are still missing. In this study, we present an approach on how to optimize radar settings for radar Doppler spectra moments in the specific context of drizzle detection. The process of drizzle development has shown to be particularly sensitive to higher radar moments such as skewness. We collected radar raw data (I/Q time series) from consecutive zenith-pointing observations for two liquid cloud cases observed at the cloud observatory JOYCE in Germany. The I/Q data allowed us to process Doppler spectra and derive their moments using different spectral resolutions and integration times during identical time intervals. This enabled us to study the sensitivity of the spatiotemporal structure of the derived moments to the different radar settings. The observed signatures were further investigated using a radar Doppler forward model which allowed us to compare observed and simulated sensitivities and also to study the impact of additional hardware-dependent parameters such as antenna beam width. For the observed cloud with drizzle onset we found that longer integration times mainly modify spectral width (Sw) and skewness (Sk), leaving other moments mostly unaffected. An integration time of 2 s seems to be an optimal compromise: both observations and simulations revealed that a 10 s integration time – as it is widely used for European cloud radars – leads to a significant turbulence-induced increase of Sw and reduction of Sk compared to 2 s integration time. This can lead to significantly different microphysical interpretations with respect to drizzle water content and effective radius. A change from 2 s to even shorter integration times (0. 4 s) has much smaller effects on Sw and Sk. We also find that spectral resolution has a small impact on the moment estimations, and thus on the microphysical interpretation of the drizzle signal. Even the coarsest spectral resolution studied, 0. 08 ms−1, seems to be appropriate for calculation moments of drizzling clouds. Moreover, simulations provided additional insight into the microphysical interpretation of the skewness signatures observed: in low (high)-turbulence conditions, only drizzle larger than 20 µm (40 µm) can generate Sk values above the Sk noise level (in our case 0.4). Higher Sk values are also obtained in simulations when smaller beam widths are adopted." @default.
- W2552912985 created "2016-11-30" @default.
- W2552912985 creator A5004546030 @default.
- W2552912985 creator A5045860366 @default.
- W2552912985 creator A5057817742 @default.
- W2552912985 creator A5058876319 @default.
- W2552912985 creator A5075668278 @default.
- W2552912985 creator A5076396116 @default.
- W2552912985 date "2017-05-12" @default.
- W2552912985 modified "2023-10-03" @default.
- W2552912985 title "Optimizing observations of drizzle onset with millimeter-wavelength radars" @default.
- W2552912985 cites W1725227087 @default.
- W2552912985 cites W1811890442 @default.
- W2552912985 cites W1941490994 @default.
- W2552912985 cites W1992802510 @default.
- W2552912985 cites W1993727835 @default.
- W2552912985 cites W2003366401 @default.
- W2552912985 cites W2029646251 @default.
- W2552912985 cites W2034563918 @default.
- W2552912985 cites W2034987173 @default.
- W2552912985 cites W2045276693 @default.
- W2552912985 cites W2048374182 @default.
- W2552912985 cites W2052760356 @default.
- W2552912985 cites W2082238833 @default.
- W2552912985 cites W2088909842 @default.
- W2552912985 cites W2099378190 @default.
- W2552912985 cites W2099772993 @default.
- W2552912985 cites W2105784916 @default.
- W2552912985 cites W2117955810 @default.
- W2552912985 cites W2120631399 @default.
- W2552912985 cites W2149848905 @default.
- W2552912985 cites W2168543820 @default.
- W2552912985 cites W2172467887 @default.
- W2552912985 cites W2172826962 @default.
- W2552912985 cites W2173109267 @default.
- W2552912985 cites W2173139146 @default.
- W2552912985 cites W2174074166 @default.
- W2552912985 cites W2175718228 @default.
- W2552912985 cites W2179765872 @default.
- W2552912985 cites W2385057993 @default.
- W2552912985 cites W2460809943 @default.
- W2552912985 cites W2555807448 @default.
- W2552912985 doi "https://doi.org/10.5194/amt-10-1783-2017" @default.
- W2552912985 hasPublicationYear "2017" @default.
- W2552912985 type Work @default.
- W2552912985 sameAs 2552912985 @default.
- W2552912985 citedByCount "15" @default.
- W2552912985 countsByYear W25529129852017 @default.
- W2552912985 countsByYear W25529129852018 @default.
- W2552912985 countsByYear W25529129852019 @default.
- W2552912985 countsByYear W25529129852020 @default.
- W2552912985 countsByYear W25529129852021 @default.
- W2552912985 countsByYear W25529129852022 @default.
- W2552912985 countsByYear W25529129852023 @default.
- W2552912985 crossrefType "journal-article" @default.
- W2552912985 hasAuthorship W2552912985A5004546030 @default.
- W2552912985 hasAuthorship W2552912985A5045860366 @default.
- W2552912985 hasAuthorship W2552912985A5057817742 @default.
- W2552912985 hasAuthorship W2552912985A5058876319 @default.
- W2552912985 hasAuthorship W2552912985A5075668278 @default.
- W2552912985 hasAuthorship W2552912985A5076396116 @default.
- W2552912985 hasBestOaLocation W25529129851 @default.
- W2552912985 hasConcept C107054158 @default.
- W2552912985 hasConcept C121332964 @default.
- W2552912985 hasConcept C127313418 @default.
- W2552912985 hasConcept C1276947 @default.
- W2552912985 hasConcept C142757262 @default.
- W2552912985 hasConcept C151730666 @default.
- W2552912985 hasConcept C153294291 @default.
- W2552912985 hasConcept C2778559676 @default.
- W2552912985 hasConcept C2779343474 @default.
- W2552912985 hasConcept C39432304 @default.
- W2552912985 hasConcept C41008148 @default.
- W2552912985 hasConcept C554190296 @default.
- W2552912985 hasConcept C62649853 @default.
- W2552912985 hasConcept C63984324 @default.
- W2552912985 hasConcept C76155785 @default.
- W2552912985 hasConceptScore W2552912985C107054158 @default.
- W2552912985 hasConceptScore W2552912985C121332964 @default.
- W2552912985 hasConceptScore W2552912985C127313418 @default.
- W2552912985 hasConceptScore W2552912985C1276947 @default.
- W2552912985 hasConceptScore W2552912985C142757262 @default.
- W2552912985 hasConceptScore W2552912985C151730666 @default.
- W2552912985 hasConceptScore W2552912985C153294291 @default.
- W2552912985 hasConceptScore W2552912985C2778559676 @default.
- W2552912985 hasConceptScore W2552912985C2779343474 @default.
- W2552912985 hasConceptScore W2552912985C39432304 @default.
- W2552912985 hasConceptScore W2552912985C41008148 @default.
- W2552912985 hasConceptScore W2552912985C554190296 @default.
- W2552912985 hasConceptScore W2552912985C62649853 @default.
- W2552912985 hasConceptScore W2552912985C63984324 @default.
- W2552912985 hasConceptScore W2552912985C76155785 @default.
- W2552912985 hasIssue "5" @default.
- W2552912985 hasLocation W25529129851 @default.
- W2552912985 hasLocation W25529129852 @default.
- W2552912985 hasLocation W25529129853 @default.
- W2552912985 hasLocation W25529129854 @default.
- W2552912985 hasLocation W25529129855 @default.