Matches in SemOpenAlex for { <https://semopenalex.org/work/W2552947231> ?p ?o ?g. }
- W2552947231 endingPage "146" @default.
- W2552947231 startingPage "135" @default.
- W2552947231 abstract "Rehabilitation and elderly monitoring for active aging can benefit from Internet of Things (IoT) capabilities in particular for in-home treatments. In this paper, we consider two functions useful for such treatments: 1) activity recognition (AR) and 2) movement recognition (MR). The former is aimed at detecting if a patient is idle, still, walking, running, going up/down the stairs, or cycling; the latter individuates specific movements often required for physical rehabilitation, such as arm circles, arm presses, arm twist, curls, seaweed, and shoulder rolls. Smartphones are the reference platforms being equipped with an accelerometer sensor and elements of the IoT. The work surveys and compares accelerometer signals classification methods to enable IoT for the aforementioned functions. The considered methods are support vector machines (SVMs), decision trees, and dynamic time warping. A comparison of the methods has been proposed to highlight their performance: all the techniques have good recognition accuracies and, among them, the SVM-based approaches show an accuracy above 90% in the case of AR and above 99% in the case of MR." @default.
- W2552947231 created "2016-11-30" @default.
- W2552947231 creator A5046303512 @default.
- W2552947231 creator A5055392194 @default.
- W2552947231 creator A5069126784 @default.
- W2552947231 creator A5077419745 @default.
- W2552947231 date "2017-02-01" @default.
- W2552947231 modified "2023-10-07" @default.
- W2552947231 title "Enabling IoT for In-Home Rehabilitation: Accelerometer Signals Classification Methods for Activity and Movement Recognition" @default.
- W2552947231 cites W1520992637 @default.
- W2552947231 cites W1527911497 @default.
- W2552947231 cites W1594815103 @default.
- W2552947231 cites W1597829226 @default.
- W2552947231 cites W1598741436 @default.
- W2552947231 cites W1940068017 @default.
- W2552947231 cites W1988412055 @default.
- W2552947231 cites W1994891245 @default.
- W2552947231 cites W1995685251 @default.
- W2552947231 cites W1997778582 @default.
- W2552947231 cites W2017634428 @default.
- W2552947231 cites W2037282345 @default.
- W2552947231 cites W2041608059 @default.
- W2552947231 cites W2050639019 @default.
- W2552947231 cites W2055532432 @default.
- W2552947231 cites W2056845022 @default.
- W2552947231 cites W2067708722 @default.
- W2552947231 cites W2072343647 @default.
- W2552947231 cites W2075284311 @default.
- W2552947231 cites W2079668303 @default.
- W2552947231 cites W2081754796 @default.
- W2552947231 cites W2088202622 @default.
- W2552947231 cites W2089900668 @default.
- W2552947231 cites W2093767384 @default.
- W2552947231 cites W2127127580 @default.
- W2552947231 cites W2127759032 @default.
- W2552947231 cites W2128160875 @default.
- W2552947231 cites W2133990480 @default.
- W2552947231 cites W2134020192 @default.
- W2552947231 cites W2134450328 @default.
- W2552947231 cites W2148048965 @default.
- W2552947231 cites W2150094731 @default.
- W2552947231 cites W2153635508 @default.
- W2552947231 cites W2154121591 @default.
- W2552947231 cites W2162062207 @default.
- W2552947231 cites W2169090109 @default.
- W2552947231 cites W2170505850 @default.
- W2552947231 cites W2172000360 @default.
- W2552947231 cites W2271890841 @default.
- W2552947231 cites W4240592325 @default.
- W2552947231 cites W4255601674 @default.
- W2552947231 doi "https://doi.org/10.1109/jiot.2016.2628938" @default.
- W2552947231 hasPublicationYear "2017" @default.
- W2552947231 type Work @default.
- W2552947231 sameAs 2552947231 @default.
- W2552947231 citedByCount "126" @default.
- W2552947231 countsByYear W25529472312017 @default.
- W2552947231 countsByYear W25529472312018 @default.
- W2552947231 countsByYear W25529472312019 @default.
- W2552947231 countsByYear W25529472312020 @default.
- W2552947231 countsByYear W25529472312021 @default.
- W2552947231 countsByYear W25529472312022 @default.
- W2552947231 countsByYear W25529472312023 @default.
- W2552947231 crossrefType "journal-article" @default.
- W2552947231 hasAuthorship W2552947231A5046303512 @default.
- W2552947231 hasAuthorship W2552947231A5055392194 @default.
- W2552947231 hasAuthorship W2552947231A5069126784 @default.
- W2552947231 hasAuthorship W2552947231A5077419745 @default.
- W2552947231 hasConcept C107038049 @default.
- W2552947231 hasConcept C111919701 @default.
- W2552947231 hasConcept C119857082 @default.
- W2552947231 hasConcept C121687571 @default.
- W2552947231 hasConcept C12267149 @default.
- W2552947231 hasConcept C127413603 @default.
- W2552947231 hasConcept C138885662 @default.
- W2552947231 hasConcept C147176958 @default.
- W2552947231 hasConcept C149635348 @default.
- W2552947231 hasConcept C150594956 @default.
- W2552947231 hasConcept C154945302 @default.
- W2552947231 hasConcept C1862650 @default.
- W2552947231 hasConcept C2777295749 @default.
- W2552947231 hasConcept C2778818304 @default.
- W2552947231 hasConcept C2780226923 @default.
- W2552947231 hasConcept C41008148 @default.
- W2552947231 hasConcept C71924100 @default.
- W2552947231 hasConcept C81860439 @default.
- W2552947231 hasConcept C88516994 @default.
- W2552947231 hasConcept C89805583 @default.
- W2552947231 hasConceptScore W2552947231C107038049 @default.
- W2552947231 hasConceptScore W2552947231C111919701 @default.
- W2552947231 hasConceptScore W2552947231C119857082 @default.
- W2552947231 hasConceptScore W2552947231C121687571 @default.
- W2552947231 hasConceptScore W2552947231C12267149 @default.
- W2552947231 hasConceptScore W2552947231C127413603 @default.
- W2552947231 hasConceptScore W2552947231C138885662 @default.
- W2552947231 hasConceptScore W2552947231C147176958 @default.
- W2552947231 hasConceptScore W2552947231C149635348 @default.
- W2552947231 hasConceptScore W2552947231C150594956 @default.
- W2552947231 hasConceptScore W2552947231C154945302 @default.