Matches in SemOpenAlex for { <https://semopenalex.org/work/W2553210147> ?p ?o ?g. }
- W2553210147 abstract "In recent years, finite mixtures of skew distributions are gaining popularity as a flexible tool for modelling data with asymmetric distributional features. Parameter estimation for these mixture models via the traditional EM algorithm requires the number of components to be specified a priori. In this paper, we consider unsupervised learning of skew mixture models where the optimal number of components is estimated during the parameter estimation process. We adopt a component-wise EM algorithm and use the minimum message length (MML) criterion. For illustrative purposes, we focus on the case of a finite mixture of multivariate skew t distributions. The performance of the approach is demonstrated on a real dataset from flow cytometry, where our mixture model was used to provide an automated segmentation of cell populations." @default.
- W2553210147 created "2016-11-30" @default.
- W2553210147 creator A5077536406 @default.
- W2553210147 creator A5083471231 @default.
- W2553210147 date "2016-01-01" @default.
- W2553210147 modified "2023-09-27" @default.
- W2553210147 title "Unsupervised Component-Wise EM Learning for Finite Mixtures of Skew t-distributions" @default.
- W2553210147 cites W1548390947 @default.
- W2553210147 cites W1664060554 @default.
- W2553210147 cites W1786657497 @default.
- W2553210147 cites W1809040990 @default.
- W2553210147 cites W1966170140 @default.
- W2553210147 cites W1989418912 @default.
- W2553210147 cites W2020158974 @default.
- W2553210147 cites W2029689100 @default.
- W2553210147 cites W2031317943 @default.
- W2553210147 cites W2035886438 @default.
- W2553210147 cites W2037941297 @default.
- W2553210147 cites W2039615557 @default.
- W2553210147 cites W2045254715 @default.
- W2553210147 cites W2072921653 @default.
- W2553210147 cites W2077321682 @default.
- W2553210147 cites W2082641592 @default.
- W2553210147 cites W2098439089 @default.
- W2553210147 cites W2110381504 @default.
- W2553210147 cites W2121529133 @default.
- W2553210147 cites W2126365559 @default.
- W2553210147 cites W2130878631 @default.
- W2553210147 cites W2159619243 @default.
- W2553210147 cites W2465581670 @default.
- W2553210147 cites W2963879592 @default.
- W2553210147 cites W3121736584 @default.
- W2553210147 cites W4248463836 @default.
- W2553210147 doi "https://doi.org/10.1007/978-3-319-49586-6_49" @default.
- W2553210147 hasPublicationYear "2016" @default.
- W2553210147 type Work @default.
- W2553210147 sameAs 2553210147 @default.
- W2553210147 citedByCount "0" @default.
- W2553210147 crossrefType "book-chapter" @default.
- W2553210147 hasAuthorship W2553210147A5077536406 @default.
- W2553210147 hasAuthorship W2553210147A5083471231 @default.
- W2553210147 hasConcept C105795698 @default.
- W2553210147 hasConcept C111472728 @default.
- W2553210147 hasConcept C11413529 @default.
- W2553210147 hasConcept C119857082 @default.
- W2553210147 hasConcept C120665830 @default.
- W2553210147 hasConcept C121332964 @default.
- W2553210147 hasConcept C138885662 @default.
- W2553210147 hasConcept C153180895 @default.
- W2553210147 hasConcept C154945302 @default.
- W2553210147 hasConcept C161584116 @default.
- W2553210147 hasConcept C167928553 @default.
- W2553210147 hasConcept C168167062 @default.
- W2553210147 hasConcept C182081679 @default.
- W2553210147 hasConcept C192209626 @default.
- W2553210147 hasConcept C33923547 @default.
- W2553210147 hasConcept C41008148 @default.
- W2553210147 hasConcept C43711488 @default.
- W2553210147 hasConcept C49781872 @default.
- W2553210147 hasConcept C61224824 @default.
- W2553210147 hasConcept C75553542 @default.
- W2553210147 hasConcept C76155785 @default.
- W2553210147 hasConcept C8038995 @default.
- W2553210147 hasConcept C89600930 @default.
- W2553210147 hasConcept C97355855 @default.
- W2553210147 hasConceptScore W2553210147C105795698 @default.
- W2553210147 hasConceptScore W2553210147C111472728 @default.
- W2553210147 hasConceptScore W2553210147C11413529 @default.
- W2553210147 hasConceptScore W2553210147C119857082 @default.
- W2553210147 hasConceptScore W2553210147C120665830 @default.
- W2553210147 hasConceptScore W2553210147C121332964 @default.
- W2553210147 hasConceptScore W2553210147C138885662 @default.
- W2553210147 hasConceptScore W2553210147C153180895 @default.
- W2553210147 hasConceptScore W2553210147C154945302 @default.
- W2553210147 hasConceptScore W2553210147C161584116 @default.
- W2553210147 hasConceptScore W2553210147C167928553 @default.
- W2553210147 hasConceptScore W2553210147C168167062 @default.
- W2553210147 hasConceptScore W2553210147C182081679 @default.
- W2553210147 hasConceptScore W2553210147C192209626 @default.
- W2553210147 hasConceptScore W2553210147C33923547 @default.
- W2553210147 hasConceptScore W2553210147C41008148 @default.
- W2553210147 hasConceptScore W2553210147C43711488 @default.
- W2553210147 hasConceptScore W2553210147C49781872 @default.
- W2553210147 hasConceptScore W2553210147C61224824 @default.
- W2553210147 hasConceptScore W2553210147C75553542 @default.
- W2553210147 hasConceptScore W2553210147C76155785 @default.
- W2553210147 hasConceptScore W2553210147C8038995 @default.
- W2553210147 hasConceptScore W2553210147C89600930 @default.
- W2553210147 hasConceptScore W2553210147C97355855 @default.
- W2553210147 hasLocation W25532101471 @default.
- W2553210147 hasOpenAccess W2553210147 @default.
- W2553210147 hasPrimaryLocation W25532101471 @default.
- W2553210147 hasRelatedWork W1964746278 @default.
- W2553210147 hasRelatedWork W1979688103 @default.
- W2553210147 hasRelatedWork W1994888851 @default.
- W2553210147 hasRelatedWork W2069587695 @default.
- W2553210147 hasRelatedWork W2093661402 @default.
- W2553210147 hasRelatedWork W2108876167 @default.
- W2553210147 hasRelatedWork W2141669543 @default.
- W2553210147 hasRelatedWork W2148817137 @default.