Matches in SemOpenAlex for { <https://semopenalex.org/work/W2553217636> ?p ?o ?g. }
- W2553217636 endingPage "987" @default.
- W2553217636 startingPage "987" @default.
- W2553217636 abstract "A reinforcement learning algorithm is proposed to improve the accuracy of short-term load forecasting (STLF) in this article. The proposed model integrates radial basis function neural network (RBFNN), support vector regression (SVR), and adaptive annealing learning algorithm (AALA). In the proposed methodology, firstly, the initial structure of RBFNN is determined by using an SVR. Then, an AALA with time-varying learning rates is used to optimize the initial parameters of SVR-RBFNN (AALA-SVR-RBFNN). In order to overcome the stagnation for searching optimal RBFNN, a particle swarm optimization (PSO) is applied to simultaneously find promising learning rates in AALA. Finally, the short-term load demands are predicted by using the optimal RBFNN. The performance of the proposed methodology is verified on the actual load dataset from the Taiwan Power Company (TPC). Simulation results reveal that the proposed AALA-SVR-RBFNN can achieve a better load forecasting precision compared to various RBFNNs." @default.
- W2553217636 created "2016-11-30" @default.
- W2553217636 creator A5008404340 @default.
- W2553217636 creator A5088467110 @default.
- W2553217636 date "2016-11-25" @default.
- W2553217636 modified "2023-10-14" @default.
- W2553217636 title "Short-Term Load Forecasting Using Adaptive Annealing Learning Algorithm Based Reinforcement Neural Network" @default.
- W2553217636 cites W1541843935 @default.
- W2553217636 cites W1711412747 @default.
- W2553217636 cites W1964514379 @default.
- W2553217636 cites W1978790155 @default.
- W2553217636 cites W1992320635 @default.
- W2553217636 cites W1994167151 @default.
- W2553217636 cites W1995921904 @default.
- W2553217636 cites W1996642839 @default.
- W2553217636 cites W1999198322 @default.
- W2553217636 cites W2003699104 @default.
- W2553217636 cites W2007034421 @default.
- W2553217636 cites W2030605379 @default.
- W2553217636 cites W2068003194 @default.
- W2553217636 cites W2069690620 @default.
- W2553217636 cites W2076163358 @default.
- W2553217636 cites W2081060955 @default.
- W2553217636 cites W2083172453 @default.
- W2553217636 cites W2083477834 @default.
- W2553217636 cites W2086188197 @default.
- W2553217636 cites W2095731600 @default.
- W2553217636 cites W2096688831 @default.
- W2553217636 cites W2106772201 @default.
- W2553217636 cites W2108388069 @default.
- W2553217636 cites W2113589985 @default.
- W2553217636 cites W2124823351 @default.
- W2553217636 cites W2127366041 @default.
- W2553217636 cites W2128535941 @default.
- W2553217636 cites W2133752269 @default.
- W2553217636 cites W2141789512 @default.
- W2553217636 cites W2144724566 @default.
- W2553217636 cites W2153845355 @default.
- W2553217636 cites W2189919008 @default.
- W2553217636 cites W2258706126 @default.
- W2553217636 cites W2345757570 @default.
- W2553217636 doi "https://doi.org/10.3390/en9120987" @default.
- W2553217636 hasPublicationYear "2016" @default.
- W2553217636 type Work @default.
- W2553217636 sameAs 2553217636 @default.
- W2553217636 citedByCount "8" @default.
- W2553217636 countsByYear W25532176362017 @default.
- W2553217636 countsByYear W25532176362020 @default.
- W2553217636 countsByYear W25532176362021 @default.
- W2553217636 countsByYear W25532176362022 @default.
- W2553217636 crossrefType "journal-article" @default.
- W2553217636 hasAuthorship W2553217636A5008404340 @default.
- W2553217636 hasAuthorship W2553217636A5088467110 @default.
- W2553217636 hasBestOaLocation W25532176361 @default.
- W2553217636 hasConcept C11413529 @default.
- W2553217636 hasConcept C119857082 @default.
- W2553217636 hasConcept C121332964 @default.
- W2553217636 hasConcept C12267149 @default.
- W2553217636 hasConcept C126980161 @default.
- W2553217636 hasConcept C154945302 @default.
- W2553217636 hasConcept C41008148 @default.
- W2553217636 hasConcept C50644808 @default.
- W2553217636 hasConcept C61797465 @default.
- W2553217636 hasConcept C62520636 @default.
- W2553217636 hasConcept C85617194 @default.
- W2553217636 hasConcept C97541855 @default.
- W2553217636 hasConceptScore W2553217636C11413529 @default.
- W2553217636 hasConceptScore W2553217636C119857082 @default.
- W2553217636 hasConceptScore W2553217636C121332964 @default.
- W2553217636 hasConceptScore W2553217636C12267149 @default.
- W2553217636 hasConceptScore W2553217636C126980161 @default.
- W2553217636 hasConceptScore W2553217636C154945302 @default.
- W2553217636 hasConceptScore W2553217636C41008148 @default.
- W2553217636 hasConceptScore W2553217636C50644808 @default.
- W2553217636 hasConceptScore W2553217636C61797465 @default.
- W2553217636 hasConceptScore W2553217636C62520636 @default.
- W2553217636 hasConceptScore W2553217636C85617194 @default.
- W2553217636 hasConceptScore W2553217636C97541855 @default.
- W2553217636 hasIssue "12" @default.
- W2553217636 hasLocation W25532176361 @default.
- W2553217636 hasLocation W25532176362 @default.
- W2553217636 hasLocation W25532176363 @default.
- W2553217636 hasOpenAccess W2553217636 @default.
- W2553217636 hasPrimaryLocation W25532176361 @default.
- W2553217636 hasRelatedWork W2012979604 @default.
- W2553217636 hasRelatedWork W2379272596 @default.
- W2553217636 hasRelatedWork W2383983444 @default.
- W2553217636 hasRelatedWork W2392110728 @default.
- W2553217636 hasRelatedWork W2937631562 @default.
- W2553217636 hasRelatedWork W2977940867 @default.
- W2553217636 hasRelatedWork W3115048730 @default.
- W2553217636 hasRelatedWork W3194539120 @default.
- W2553217636 hasRelatedWork W4361795583 @default.
- W2553217636 hasRelatedWork W4362499384 @default.
- W2553217636 hasVolume "9" @default.
- W2553217636 isParatext "false" @default.
- W2553217636 isRetracted "false" @default.
- W2553217636 magId "2553217636" @default.