Matches in SemOpenAlex for { <https://semopenalex.org/work/W2553519799> ?p ?o ?g. }
- W2553519799 endingPage "959" @default.
- W2553519799 startingPage "959" @default.
- W2553519799 abstract "A method to retrieve soil moisture (SM) from Advanced Scanning Microwave Radiometer—Earth Observing System Sensor (AMSR-E) observations using Soil Moisture and Ocean Salinity (SMOS) Level 3 SM as a reference is discussed. The goal is to obtain longer time series of SM with no significant bias and with a similar dynamical range to that of the SMOS SM dataset. This method consists of training a neural network (NN) to obtain a global non-linear relationship linking AMSR-E brightness temperatures ( T b ) to the SMOS L3 SM dataset on the concurrent mission period of 1.5 years. Then, the NN model is used to derive soil moisture from past AMSR-E observations. It is shown that in spite of the different frequencies and sensing depths of AMSR-E and SMOS, it is possible to find such a global relationship. The sensitivity of AMSR-E T b ’s to soil temperature ( T s o i l ) was also evaluated using European Centre for Medium-Range Weather Forecast Interim/Land re-analysis (ERA-Land) and Modern-Era Retrospective analysis for Research and Applications-Land (MERRA-Land) model data. The best combination of AMSR-E T b ’s to retrieve T s o i l is H polarization at 23 and 36 GHz plus V polarization at 36 GHz. Regarding SM, several combinations of input data show a similar performance in retrieving SM. One NN that uses C and X bands and T s o i l information was chosen to obtain SM in the 2003–2011 period. The new dataset shows a low bias (<0.02 m3/m3) and low standard deviation of the difference (<0.04 m3/m3) with respect to SMOS L3 SM over most of the globe’s surface. The new dataset was evaluated together with other AMSR-E SM datasets and the Climate Change Initiative (CCI) SM dataset against the MERRA-Land and ERA-Land models for the 2003–2011 period. All datasets show a significant bias with respect to models for boreal regions and high correlations over regions other than the tropical and boreal forest. All of the global SM datasets including AMSR-E NN were also evaluated against a large number of in situ measurements over four continents. Over Australia, all datasets show a strong level of agreement with in situ measurements. Models perform better over Europe and mountainous regions in North America. Remote sensing datasets (in particular NN and the Land Parameter Retrieval Model (LPRM)) perform as well as models for other North American sites and perform better than models over the Sahel region." @default.
- W2553519799 created "2016-11-30" @default.
- W2553519799 creator A5025345695 @default.
- W2553519799 creator A5026657494 @default.
- W2553519799 creator A5040956718 @default.
- W2553519799 creator A5043940512 @default.
- W2553519799 creator A5052647280 @default.
- W2553519799 creator A5054089690 @default.
- W2553519799 creator A5058250099 @default.
- W2553519799 creator A5063509872 @default.
- W2553519799 creator A5081627952 @default.
- W2553519799 creator A5086850291 @default.
- W2553519799 date "2016-11-18" @default.
- W2553519799 modified "2023-10-16" @default.
- W2553519799 title "Long Term Global Surface Soil Moisture Fields Using an SMOS-Trained Neural Network Applied to AMSR-E Data" @default.
- W2553519799 cites W1583666188 @default.
- W2553519799 cites W1651208609 @default.
- W2553519799 cites W1709299637 @default.
- W2553519799 cites W1886678720 @default.
- W2553519799 cites W1898704524 @default.
- W2553519799 cites W1981146655 @default.
- W2553519799 cites W1987902111 @default.
- W2553519799 cites W1996375963 @default.
- W2553519799 cites W2009484044 @default.
- W2553519799 cites W2012968254 @default.
- W2553519799 cites W2018608667 @default.
- W2553519799 cites W2019000616 @default.
- W2553519799 cites W2019043322 @default.
- W2553519799 cites W2030437435 @default.
- W2553519799 cites W2039865412 @default.
- W2553519799 cites W2046851717 @default.
- W2553519799 cites W2047366175 @default.
- W2553519799 cites W2049868698 @default.
- W2553519799 cites W2055976274 @default.
- W2553519799 cites W2056218351 @default.
- W2553519799 cites W2064005663 @default.
- W2553519799 cites W2068313895 @default.
- W2553519799 cites W2070673963 @default.
- W2553519799 cites W2074355870 @default.
- W2553519799 cites W2078567763 @default.
- W2553519799 cites W2079044410 @default.
- W2553519799 cites W2085195125 @default.
- W2553519799 cites W2094351185 @default.
- W2553519799 cites W2098289300 @default.
- W2553519799 cites W2104642399 @default.
- W2553519799 cites W2108811427 @default.
- W2553519799 cites W2110267519 @default.
- W2553519799 cites W2110456297 @default.
- W2553519799 cites W2112105203 @default.
- W2553519799 cites W2116428100 @default.
- W2553519799 cites W2117858619 @default.
- W2553519799 cites W2119977259 @default.
- W2553519799 cites W2121745948 @default.
- W2553519799 cites W2127967130 @default.
- W2553519799 cites W2131836035 @default.
- W2553519799 cites W2132549823 @default.
- W2553519799 cites W2135048240 @default.
- W2553519799 cites W2135552708 @default.
- W2553519799 cites W2137807472 @default.
- W2553519799 cites W2137983211 @default.
- W2553519799 cites W2139845314 @default.
- W2553519799 cites W2141219203 @default.
- W2553519799 cites W2147241431 @default.
- W2553519799 cites W2148691574 @default.
- W2553519799 cites W2151593676 @default.
- W2553519799 cites W2151949673 @default.
- W2553519799 cites W2157980636 @default.
- W2553519799 cites W2166609657 @default.
- W2553519799 cites W2167313312 @default.
- W2553519799 cites W2167962096 @default.
- W2553519799 cites W2169517707 @default.
- W2553519799 cites W2181234700 @default.
- W2553519799 cites W2192767806 @default.
- W2553519799 cites W2250213412 @default.
- W2553519799 cites W2348428089 @default.
- W2553519799 cites W2352044181 @default.
- W2553519799 cites W2371087404 @default.
- W2553519799 cites W2501784446 @default.
- W2553519799 cites W4248268909 @default.
- W2553519799 cites W4252981014 @default.
- W2553519799 doi "https://doi.org/10.3390/rs8110959" @default.
- W2553519799 hasPublicationYear "2016" @default.
- W2553519799 type Work @default.
- W2553519799 sameAs 2553519799 @default.
- W2553519799 citedByCount "31" @default.
- W2553519799 countsByYear W25535197992017 @default.
- W2553519799 countsByYear W25535197992018 @default.
- W2553519799 countsByYear W25535197992019 @default.
- W2553519799 countsByYear W25535197992020 @default.
- W2553519799 countsByYear W25535197992021 @default.
- W2553519799 countsByYear W25535197992022 @default.
- W2553519799 countsByYear W25535197992023 @default.
- W2553519799 crossrefType "journal-article" @default.
- W2553519799 hasAuthorship W2553519799A5025345695 @default.
- W2553519799 hasAuthorship W2553519799A5026657494 @default.
- W2553519799 hasAuthorship W2553519799A5040956718 @default.
- W2553519799 hasAuthorship W2553519799A5043940512 @default.
- W2553519799 hasAuthorship W2553519799A5052647280 @default.