Matches in SemOpenAlex for { <https://semopenalex.org/work/W2553526915> ?p ?o ?g. }
- W2553526915 endingPage "8488" @default.
- W2553526915 startingPage "8484" @default.
- W2553526915 abstract "Communication pubs.acs.org/cm Stabilization of a Metastable Fibrous Bi 21.2(1) (Mn 1−x Co x ) 20 Phase with Pseudo-Pentagonal Symmetry Prepared Using a Bi Self-Flux Srinivasa Thimmaiah,* ,† Valentin Taufour, †,§ Scott Saunders, § Stephen March, § Yuemei Zhang, ‡ Matthew J. Kramer, †,∥ Paul C. Canfield, †,§ and Gordon J. Miller †,‡ The Ames Laboratory, U.S. Department of Energy, Iowa State University, Ames, Iowa 50011, United States Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States S Supporting Information P ermanent magnets are exceptionally critical for many environmentally friendly, energy harvesting technologies in our energy demanding modern world. 1,2 In particular, rare earth (RE) based permanent magnets such as Nd 2 Fe 14 B 23−5 and SmCo 56,7 are extensively used for energy conversion purposes, mainly in high-power generators and motors found in wind turbines and electric vehicles, due to their very high energy product (BH max ) and lightweight. In particular, demand for RE-based permanent magnets has been growing exponen- tially in recent years. Therefore, to ease reliance on RE-based permanent magnets, development of low cost alternative materials that have high energy products and high Curie temperatures are critical for future sustainability. Mn-based 8 intermetallic compounds are examples gaining ground as an effective alternative, especially the ferromagnetic, low temper- ature (LT) BiMn phase adopting the NiAs-type structure and exhibiting a large uniaxial magnetic anisotropy (K = 2.2 × 10 7 erg cm −3 at 500 K). At temperatures exceeding 300 K, LT- BiMn shows remarkably high coercivity, which is even larger than that for Nd 2 Fe 14 B 2 magnets, making LT-BiMn suitable for high temperature applications. 9−12 However, at 633 K ferromagnetic LT-BiMn transforms to a paramagnetic, high- temperature phase (HTP), 13,14 which, upon rapid quenching, results in a ferromagnetic phase that shows an interesting magneto-optical property 15−18 applicable for magneto-optical memory devices. There are two structural transitions reported for LT-BiMn: one at ca. 100 K where spin reorientation occurs; 19 and another above its Curie or decomposition temperature (633 K). Theoretical calculations suggested that partial replacement of Mn by other transition metals could stabilize its structure in the hexagonal NiAs-type, which is essential for retaining the magnetic properties as well as increasing the magnetic anisotropy, 20,21 but experimental results reveal a change in crystal structure upon doping. 22 Herein, we report a new phase Bi 21.2(1) (Mn 1−x Co x ) 20 (x ∼ 0.15) that was discovered during systematic substitution of 3d and 4d 22 transition metals for Mn in LT-BiMn (NiAs-type) as a theoretically predicted strategy to increase magnetic anisotropy and stabilization of NiAs-type structure at elevated temperature. Crystals of a new metastable Co-doped BiMn phase were grown using Bi as a self-flux at 280 °C. 23 Figure 1 shows the soft and highly fibrous nature of these crystals, which split into submicron-size strands upon applied pressure. According to © 2016 American Chemical Society Figure 1. SEM micrographs of Bi 21.2(1) (Mn 1−x Co x ) 20 crystals showing fibrous morphology. DSC, the Co-doped BiMn phase decomposes endothermically on heating around 168 °C, with no evidence of formation of a new phase during cooling (see Supporting Information, Figure S2). This clearly indicates the metastable nature of the new phase. On the contrary, typical high-temperature reaction conditions of a sample with nominal composition of Mn 43 Co 7 Bi 50 resulted in the hexagonal NiAs-type structure (a = 4.2907(1) A, c = 6.1199(3) A), 24 which decomposes around 355 °C (see Supporting Information, Figure S4) upon heating. Single crystal X-ray diffraction revealed that the new phase crystallizes in orthorhombic symmetry, space group Imma, and the refined composition is Bi 21.2(1) (Mn 1−x Co x ) 20 (x ∼ 0.15). However, the positions of Co atoms in the crystal structure could not be established precisely due to the similar X-ray scattering contrasts of Mn and Co. Thus, wavelength-dispersive X-ray spectroscopy was employed to estimate the amount of Co to be 7(1) at.% in the structure. To evaluate any possible chemical ordering of Co in the structure, we have calculated total energies for two different compositions, each with three different coloring schemes, using VASP. The calculated energy differences among these various coloring models were found to be negligible (11−64 meV/cell or 0.26−1.52 meV/atom) (see Supporting Information, Figure S9), indicating low probability for chemical ordering of Co atoms in the structure under these synthetic conditions. Therefore, we can conclude that Co atoms are essentially randomly mixed with Mn atoms at the 3d metal positions. Received: October 21, 2016 Revised: November 15, 2016 Published: November 15, 2016 DOI: 10.1021/acs.chemmater.6b04505 Chem. Mater. 2016, 28, 8484−8488" @default.
- W2553526915 created "2016-11-30" @default.
- W2553526915 creator A5009845829 @default.
- W2553526915 creator A5010549900 @default.
- W2553526915 creator A5015298345 @default.
- W2553526915 creator A5022009101 @default.
- W2553526915 creator A5023749972 @default.
- W2553526915 creator A5052808693 @default.
- W2553526915 creator A5073060347 @default.
- W2553526915 creator A5083481154 @default.
- W2553526915 date "2016-11-17" @default.
- W2553526915 modified "2023-09-23" @default.
- W2553526915 title "Stabilization of a Metastable Fibrous Bi<sub>21.2(1)</sub>(Mn<sub>1–<i>x</i></sub>Co<sub><i>x</i></sub>)<sub>20</sub> Phase with Pseudo-Pentagonal Symmetry Prepared Using a Bi Self-Flux" @default.
- W2553526915 cites W1440502928 @default.
- W2553526915 cites W1965771350 @default.
- W2553526915 cites W1967065812 @default.
- W2553526915 cites W1969360633 @default.
- W2553526915 cites W1970127494 @default.
- W2553526915 cites W1977052615 @default.
- W2553526915 cites W1979544533 @default.
- W2553526915 cites W1981368803 @default.
- W2553526915 cites W1984676660 @default.
- W2553526915 cites W1989346208 @default.
- W2553526915 cites W1991189713 @default.
- W2553526915 cites W1991340459 @default.
- W2553526915 cites W2002705120 @default.
- W2553526915 cites W2006748692 @default.
- W2553526915 cites W2021843045 @default.
- W2553526915 cites W2025140333 @default.
- W2553526915 cites W2025485751 @default.
- W2553526915 cites W2026572419 @default.
- W2553526915 cites W2026689931 @default.
- W2553526915 cites W2027786584 @default.
- W2553526915 cites W2028679553 @default.
- W2553526915 cites W2035289330 @default.
- W2553526915 cites W2043492105 @default.
- W2553526915 cites W2043594473 @default.
- W2553526915 cites W2043984775 @default.
- W2553526915 cites W2044661329 @default.
- W2553526915 cites W2045243294 @default.
- W2553526915 cites W2047674059 @default.
- W2553526915 cites W2048742098 @default.
- W2553526915 cites W2052523499 @default.
- W2553526915 cites W2054268064 @default.
- W2553526915 cites W2060677182 @default.
- W2553526915 cites W2068119134 @default.
- W2553526915 cites W2072570211 @default.
- W2553526915 cites W2072724865 @default.
- W2553526915 cites W2081296325 @default.
- W2553526915 cites W2082505519 @default.
- W2553526915 cites W2083222334 @default.
- W2553526915 cites W2087945380 @default.
- W2553526915 cites W2088043604 @default.
- W2553526915 cites W2088922501 @default.
- W2553526915 cites W2092606380 @default.
- W2553526915 cites W2093914988 @default.
- W2553526915 cites W2119036617 @default.
- W2553526915 cites W2124179748 @default.
- W2553526915 cites W2127134962 @default.
- W2553526915 cites W2162819303 @default.
- W2553526915 cites W2295112041 @default.
- W2553526915 cites W2296816438 @default.
- W2553526915 cites W2949502236 @default.
- W2553526915 cites W2952625822 @default.
- W2553526915 cites W3099588606 @default.
- W2553526915 cites W3102573930 @default.
- W2553526915 doi "https://doi.org/10.1021/acs.chemmater.6b04505" @default.
- W2553526915 hasPublicationYear "2016" @default.
- W2553526915 type Work @default.
- W2553526915 sameAs 2553526915 @default.
- W2553526915 citedByCount "2" @default.
- W2553526915 countsByYear W25535269152017 @default.
- W2553526915 countsByYear W25535269152021 @default.
- W2553526915 crossrefType "journal-article" @default.
- W2553526915 hasAuthorship W2553526915A5009845829 @default.
- W2553526915 hasAuthorship W2553526915A5010549900 @default.
- W2553526915 hasAuthorship W2553526915A5015298345 @default.
- W2553526915 hasAuthorship W2553526915A5022009101 @default.
- W2553526915 hasAuthorship W2553526915A5023749972 @default.
- W2553526915 hasAuthorship W2553526915A5052808693 @default.
- W2553526915 hasAuthorship W2553526915A5073060347 @default.
- W2553526915 hasAuthorship W2553526915A5083481154 @default.
- W2553526915 hasBestOaLocation W25535269152 @default.
- W2553526915 hasConcept C115624301 @default.
- W2553526915 hasConcept C158842870 @default.
- W2553526915 hasConcept C178790620 @default.
- W2553526915 hasConcept C185592680 @default.
- W2553526915 hasConcept C192562407 @default.
- W2553526915 hasConcept C2524010 @default.
- W2553526915 hasConcept C2779886137 @default.
- W2553526915 hasConcept C33923547 @default.
- W2553526915 hasConcept C44280652 @default.
- W2553526915 hasConcept C8010536 @default.
- W2553526915 hasConcept C89464430 @default.
- W2553526915 hasConceptScore W2553526915C115624301 @default.
- W2553526915 hasConceptScore W2553526915C158842870 @default.
- W2553526915 hasConceptScore W2553526915C178790620 @default.
- W2553526915 hasConceptScore W2553526915C185592680 @default.