Matches in SemOpenAlex for { <https://semopenalex.org/work/W2553542249> ?p ?o ?g. }
- W2553542249 abstract "In this paper, we present a hierarchical feature learning method called Stacked Tensor Subspace Learning (STSL). It can jointly learn spectral and spatial features of hyperspectral images (HSIs) by iteratively abstracting neighboring regions. STSL is able to learn discriminative spectral-spatial features of the input HSI at different scales. In STSL, the joint spectral and spatial features are extracted using Marginal Fisher Analysis (MFA) and Tensor Principal Component Analysis (TPCA). Then Kernel-based Extreme Learning Machine (KELM), a shallow neural network, is embedded in the proposed method to classify image pixels. The important contributions to the success of STSL are exploiting local spatial structure of HSI by using tensor method and designing hierarchical architecture. Extensive experimental results on two challenging HSI data sets taken from the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS) airborne sensors show that the proposed method can produce good classification accuracy with smaller training sets." @default.
- W2553542249 created "2016-11-30" @default.
- W2553542249 creator A5026977092 @default.
- W2553542249 creator A5034120795 @default.
- W2553542249 date "2016-07-01" @default.
- W2553542249 modified "2023-09-25" @default.
- W2553542249 title "Stacked Tensor Subspace Learning for hyperspectral image classification" @default.
- W2553542249 cites W1521436688 @default.
- W2553542249 cites W1843779453 @default.
- W2553542249 cites W1967649788 @default.
- W2553542249 cites W1969790106 @default.
- W2553542249 cites W1972524915 @default.
- W2553542249 cites W1992085455 @default.
- W2553542249 cites W1993717606 @default.
- W2553542249 cites W2001298023 @default.
- W2553542249 cites W2002849025 @default.
- W2553542249 cites W2004990382 @default.
- W2553542249 cites W2010193829 @default.
- W2553542249 cites W2016355702 @default.
- W2553542249 cites W2016860790 @default.
- W2553542249 cites W2017212187 @default.
- W2553542249 cites W2018257962 @default.
- W2553542249 cites W2018775529 @default.
- W2553542249 cites W2022508996 @default.
- W2553542249 cites W2026131661 @default.
- W2553542249 cites W2029019271 @default.
- W2553542249 cites W2029316659 @default.
- W2553542249 cites W2030476695 @default.
- W2553542249 cites W2041100636 @default.
- W2553542249 cites W2043665634 @default.
- W2553542249 cites W2044184146 @default.
- W2553542249 cites W2052160904 @default.
- W2553542249 cites W2056621966 @default.
- W2553542249 cites W2062964394 @default.
- W2553542249 cites W2063907334 @default.
- W2553542249 cites W2072187267 @default.
- W2553542249 cites W2081176632 @default.
- W2553542249 cites W2084580654 @default.
- W2553542249 cites W2086866337 @default.
- W2553542249 cites W2099609584 @default.
- W2553542249 cites W2100495367 @default.
- W2553542249 cites W2101479772 @default.
- W2553542249 cites W2114819256 @default.
- W2553542249 cites W2118945875 @default.
- W2553542249 cites W2129149445 @default.
- W2553542249 cites W2134905716 @default.
- W2553542249 cites W2136922672 @default.
- W2553542249 cites W2146952738 @default.
- W2553542249 cites W2151599207 @default.
- W2553542249 cites W2152414269 @default.
- W2553542249 cites W2153125595 @default.
- W2553542249 cites W2153534417 @default.
- W2553542249 cites W2163605009 @default.
- W2553542249 cites W2166923144 @default.
- W2553542249 cites W2169535263 @default.
- W2553542249 cites W2250547309 @default.
- W2553542249 cites W2417947228 @default.
- W2553542249 cites W3148981562 @default.
- W2553542249 doi "https://doi.org/10.1109/ijcnn.2016.7727443" @default.
- W2553542249 hasPublicationYear "2016" @default.
- W2553542249 type Work @default.
- W2553542249 sameAs 2553542249 @default.
- W2553542249 citedByCount "1" @default.
- W2553542249 countsByYear W25535422492018 @default.
- W2553542249 crossrefType "proceedings-article" @default.
- W2553542249 hasAuthorship W2553542249A5026977092 @default.
- W2553542249 hasAuthorship W2553542249A5034120795 @default.
- W2553542249 hasConcept C114614502 @default.
- W2553542249 hasConcept C120665830 @default.
- W2553542249 hasConcept C121332964 @default.
- W2553542249 hasConcept C12267149 @default.
- W2553542249 hasConcept C127313418 @default.
- W2553542249 hasConcept C138885662 @default.
- W2553542249 hasConcept C153180895 @default.
- W2553542249 hasConcept C154945302 @default.
- W2553542249 hasConcept C155281189 @default.
- W2553542249 hasConcept C159078339 @default.
- W2553542249 hasConcept C160633673 @default.
- W2553542249 hasConcept C183852935 @default.
- W2553542249 hasConcept C202444582 @default.
- W2553542249 hasConcept C27438332 @default.
- W2553542249 hasConcept C2776401178 @default.
- W2553542249 hasConcept C31972630 @default.
- W2553542249 hasConcept C32834561 @default.
- W2553542249 hasConcept C33390570 @default.
- W2553542249 hasConcept C33923547 @default.
- W2553542249 hasConcept C41008148 @default.
- W2553542249 hasConcept C41895202 @default.
- W2553542249 hasConcept C62649853 @default.
- W2553542249 hasConcept C74193536 @default.
- W2553542249 hasConcept C97931131 @default.
- W2553542249 hasConceptScore W2553542249C114614502 @default.
- W2553542249 hasConceptScore W2553542249C120665830 @default.
- W2553542249 hasConceptScore W2553542249C121332964 @default.
- W2553542249 hasConceptScore W2553542249C12267149 @default.
- W2553542249 hasConceptScore W2553542249C127313418 @default.
- W2553542249 hasConceptScore W2553542249C138885662 @default.
- W2553542249 hasConceptScore W2553542249C153180895 @default.
- W2553542249 hasConceptScore W2553542249C154945302 @default.
- W2553542249 hasConceptScore W2553542249C155281189 @default.