Matches in SemOpenAlex for { <https://semopenalex.org/work/W2553544826> ?p ?o ?g. }
- W2553544826 endingPage "221" @default.
- W2553544826 startingPage "206" @default.
- W2553544826 abstract "Abstract The U.S. Geological Survey’s Land Change Monitoring, Assessment, and Projection (LCMAP) initiative is a new end-to-end capability to continuously track and characterize changes in land cover, use, and condition to better support research and applications relevant to resource management and environmental change. Among the LCMAP product suite are annual land cover maps that will be available to the public. This paper describes an approach to optimize the selection of training and auxiliary data for deriving the thematic land cover maps based on all available clear observations from Landsats 4–8. Training data were selected from map products of the U.S. Geological Survey’s Land Cover Trends project. The Random Forest classifier was applied for different classification scenarios based on the Continuous Change Detection and Classification (CCDC) algorithm. We found that extracting training data proportionally to the occurrence of land cover classes was superior to an equal distribution of training data per class, and suggest using a total of 20,000 training pixels to classify an area about the size of a Landsat scene. The problem of unbalanced training data was alleviated by extracting a minimum of 600 training pixels and a maximum of 8000 training pixels per class. We additionally explored removing outliers contained within the training data based on their spectral and spatial criteria, but observed no significant improvement in classification results. We also tested the importance of different types of auxiliary data that were available for the conterminous United States, including: (a) five variables used by the National Land Cover Database, (b) three variables from the cloud screening “Function of mask” (Fmask) statistics, and (c) two variables from the change detection results of CCDC. We found that auxiliary variables such as a Digital Elevation Model and its derivatives (aspect, position index, and slope), potential wetland index, water probability, snow probability, and cloud probability improved the accuracy of land cover classification. Compared to the original strategy of the CCDC algorithm (500 pixels per class), the use of the optimal strategy improved the classification accuracies substantially (15-percentage point increase in overall accuracy and 4-percentage point increase in minimum accuracy)." @default.
- W2553544826 created "2016-11-30" @default.
- W2553544826 creator A5000966249 @default.
- W2553544826 creator A5002508982 @default.
- W2553544826 creator A5006812496 @default.
- W2553544826 creator A5008824829 @default.
- W2553544826 creator A5013421915 @default.
- W2553544826 creator A5015092269 @default.
- W2553544826 creator A5029728349 @default.
- W2553544826 creator A5086318321 @default.
- W2553544826 creator A5087795028 @default.
- W2553544826 creator A5091276881 @default.
- W2553544826 date "2016-12-01" @default.
- W2553544826 modified "2023-10-17" @default.
- W2553544826 title "Optimizing selection of training and auxiliary data for operational land cover classification for the LCMAP initiative" @default.
- W2553544826 cites W1531640903 @default.
- W2553544826 cites W1536340909 @default.
- W2553544826 cites W1565635109 @default.
- W2553544826 cites W1580493526 @default.
- W2553544826 cites W1927159739 @default.
- W2553544826 cites W1973299995 @default.
- W2553544826 cites W1982121855 @default.
- W2553544826 cites W1985077337 @default.
- W2553544826 cites W1989428365 @default.
- W2553544826 cites W1990653740 @default.
- W2553544826 cites W1996031526 @default.
- W2553544826 cites W1998979050 @default.
- W2553544826 cites W2001510610 @default.
- W2553544826 cites W2006929658 @default.
- W2553544826 cites W2008347724 @default.
- W2553544826 cites W2010884258 @default.
- W2553544826 cites W2011500029 @default.
- W2553544826 cites W2014555541 @default.
- W2553544826 cites W2020127479 @default.
- W2553544826 cites W2023639956 @default.
- W2553544826 cites W2024968541 @default.
- W2553544826 cites W2025745000 @default.
- W2553544826 cites W2027442956 @default.
- W2553544826 cites W2028240797 @default.
- W2553544826 cites W2030851497 @default.
- W2553544826 cites W2034489756 @default.
- W2553544826 cites W2035636738 @default.
- W2553544826 cites W2042692910 @default.
- W2553544826 cites W2046703661 @default.
- W2553544826 cites W2055505446 @default.
- W2553544826 cites W2055718260 @default.
- W2553544826 cites W2058963764 @default.
- W2553544826 cites W2063580009 @default.
- W2553544826 cites W2068302187 @default.
- W2553544826 cites W2075845155 @default.
- W2553544826 cites W2078619499 @default.
- W2553544826 cites W2082874195 @default.
- W2553544826 cites W2084502283 @default.
- W2553544826 cites W2089316943 @default.
- W2553544826 cites W2100001151 @default.
- W2553544826 cites W2101711129 @default.
- W2553544826 cites W2114968414 @default.
- W2553544826 cites W2121025662 @default.
- W2553544826 cites W2124624125 @default.
- W2553544826 cites W2127070009 @default.
- W2553544826 cites W2127559745 @default.
- W2553544826 cites W2132424470 @default.
- W2553544826 cites W2134721717 @default.
- W2553544826 cites W2137130182 @default.
- W2553544826 cites W2138499468 @default.
- W2553544826 cites W2139086914 @default.
- W2553544826 cites W2141881345 @default.
- W2553544826 cites W2143296882 @default.
- W2553544826 cites W2145862305 @default.
- W2553544826 cites W2148143831 @default.
- W2553544826 cites W2155289042 @default.
- W2553544826 cites W2155632266 @default.
- W2553544826 cites W2166307050 @default.
- W2553544826 cites W2168809519 @default.
- W2553544826 cites W2170804038 @default.
- W2553544826 cites W2188083314 @default.
- W2553544826 cites W2190950038 @default.
- W2553544826 cites W2911964244 @default.
- W2553544826 cites W4233331630 @default.
- W2553544826 cites W4240456663 @default.
- W2553544826 cites W4246259808 @default.
- W2553544826 cites W45732310 @default.
- W2553544826 doi "https://doi.org/10.1016/j.isprsjprs.2016.11.004" @default.
- W2553544826 hasPublicationYear "2016" @default.
- W2553544826 type Work @default.
- W2553544826 sameAs 2553544826 @default.
- W2553544826 citedByCount "114" @default.
- W2553544826 countsByYear W25535448262016 @default.
- W2553544826 countsByYear W25535448262017 @default.
- W2553544826 countsByYear W25535448262018 @default.
- W2553544826 countsByYear W25535448262019 @default.
- W2553544826 countsByYear W25535448262020 @default.
- W2553544826 countsByYear W25535448262021 @default.
- W2553544826 countsByYear W25535448262022 @default.
- W2553544826 countsByYear W25535448262023 @default.
- W2553544826 crossrefType "journal-article" @default.
- W2553544826 hasAuthorship W2553544826A5000966249 @default.
- W2553544826 hasAuthorship W2553544826A5002508982 @default.