Matches in SemOpenAlex for { <https://semopenalex.org/work/W2553546178> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2553546178 endingPage "144" @default.
- W2553546178 startingPage "135" @default.
- W2553546178 abstract "This paper proposes two new classifiers that automatically recognise twelve combined analog and digital modulated signals without any a priori knowledge of the modulation schemes and the modulation parameters. The classifiers are developed using pattern recognition approach. Feature keys extracted from the instantaneous amplitude, instantaneous phase and the spectrum symmetry of the simulated signals are used as inputs to the artificial neural network employed in developing the classifiers. The two developed classifiers are trained using scaled conjugate gradient (SCG) and conjugate gradient (CONJGRAD) training algorithms. Sample results of the two classifiers show good success recognition performance with an average overall recognition rate above 99.50% at signal-to-noise ratio (SNR) value from 0 dB and above with the two training algorithms employed and an average overall recognition rate slightly above 99.00% and 96.40% respectively at - 5 dB SNR value for SCG and CONJGRAD training algorithms. The comparative performance evaluation of the two developed classifiers using the two training algorithms shows that the two training algorithms have different effects on both the response rate and efficiency of the two developed artificial neural networks classifiers. In addition, the result of the performance evaluation carried out on the overall success recognition rates between the two developed classifiers in this study using pattern recognition approach with the two training algorithms and one reported classifier in surveyed literature using decision-theoretic approach shows that the classifiers developed in this study perform favourably with regard to accuracy and performance probability as compared to classifier presented in previous study." @default.
- W2553546178 created "2016-11-30" @default.
- W2553546178 creator A5038813490 @default.
- W2553546178 creator A5047184401 @default.
- W2553546178 date "2015-08-01" @default.
- W2553546178 modified "2023-09-23" @default.
- W2553546178 title "Development and Comparative Study of Effects of Training Algorithms on Performance of Artificial Neural Network Based Analog and Digital Automatic Modulation Recognition" @default.
- W2553546178 cites W1529421824 @default.
- W2553546178 cites W1580469463 @default.
- W2553546178 cites W1608380097 @default.
- W2553546178 cites W1839690819 @default.
- W2553546178 cites W1916913253 @default.
- W2553546178 cites W1977677119 @default.
- W2553546178 cites W1994162978 @default.
- W2553546178 cites W2002643600 @default.
- W2553546178 cites W2005956500 @default.
- W2553546178 cites W2012059620 @default.
- W2553546178 cites W2013714344 @default.
- W2553546178 cites W2020321263 @default.
- W2553546178 cites W2029263082 @default.
- W2553546178 cites W2042272696 @default.
- W2553546178 cites W2068135762 @default.
- W2553546178 cites W2077357044 @default.
- W2553546178 cites W2086936214 @default.
- W2553546178 cites W2088104175 @default.
- W2553546178 cites W2088331655 @default.
- W2553546178 cites W2108700019 @default.
- W2553546178 cites W2127785516 @default.
- W2553546178 cites W2130014182 @default.
- W2553546178 cites W2133218851 @default.
- W2553546178 cites W2133584084 @default.
- W2553546178 cites W2134952368 @default.
- W2553546178 cites W2147893740 @default.
- W2553546178 cites W2148445536 @default.
- W2553546178 cites W2151238308 @default.
- W2553546178 cites W2155955215 @default.
- W2553546178 cites W2157473107 @default.
- W2553546178 cites W2333892472 @default.
- W2553546178 cites W2976041290 @default.
- W2553546178 cites W3145726921 @default.
- W2553546178 cites W819137 @default.
- W2553546178 cites W2185588057 @default.
- W2553546178 doi "https://doi.org/10.25103/jestr.084.22" @default.
- W2553546178 hasPublicationYear "2015" @default.
- W2553546178 type Work @default.
- W2553546178 sameAs 2553546178 @default.
- W2553546178 citedByCount "4" @default.
- W2553546178 countsByYear W25535461782016 @default.
- W2553546178 countsByYear W25535461782018 @default.
- W2553546178 countsByYear W25535461782019 @default.
- W2553546178 crossrefType "journal-article" @default.
- W2553546178 hasAuthorship W2553546178A5038813490 @default.
- W2553546178 hasAuthorship W2553546178A5047184401 @default.
- W2553546178 hasBestOaLocation W25535461781 @default.
- W2553546178 hasConcept C107038049 @default.
- W2553546178 hasConcept C119857082 @default.
- W2553546178 hasConcept C121332964 @default.
- W2553546178 hasConcept C123079801 @default.
- W2553546178 hasConcept C138885662 @default.
- W2553546178 hasConcept C153180895 @default.
- W2553546178 hasConcept C153294291 @default.
- W2553546178 hasConcept C154945302 @default.
- W2553546178 hasConcept C2777211547 @default.
- W2553546178 hasConcept C41008148 @default.
- W2553546178 hasConcept C50644808 @default.
- W2553546178 hasConceptScore W2553546178C107038049 @default.
- W2553546178 hasConceptScore W2553546178C119857082 @default.
- W2553546178 hasConceptScore W2553546178C121332964 @default.
- W2553546178 hasConceptScore W2553546178C123079801 @default.
- W2553546178 hasConceptScore W2553546178C138885662 @default.
- W2553546178 hasConceptScore W2553546178C153180895 @default.
- W2553546178 hasConceptScore W2553546178C153294291 @default.
- W2553546178 hasConceptScore W2553546178C154945302 @default.
- W2553546178 hasConceptScore W2553546178C2777211547 @default.
- W2553546178 hasConceptScore W2553546178C41008148 @default.
- W2553546178 hasConceptScore W2553546178C50644808 @default.
- W2553546178 hasIssue "4" @default.
- W2553546178 hasLocation W25535461781 @default.
- W2553546178 hasLocation W25535461782 @default.
- W2553546178 hasOpenAccess W2553546178 @default.
- W2553546178 hasPrimaryLocation W25535461781 @default.
- W2553546178 hasRelatedWork W2386387936 @default.
- W2553546178 hasRelatedWork W2961085424 @default.
- W2553546178 hasRelatedWork W3046775127 @default.
- W2553546178 hasRelatedWork W3170094116 @default.
- W2553546178 hasRelatedWork W4205958290 @default.
- W2553546178 hasRelatedWork W4285260836 @default.
- W2553546178 hasRelatedWork W4286629047 @default.
- W2553546178 hasRelatedWork W4306321456 @default.
- W2553546178 hasRelatedWork W4306674287 @default.
- W2553546178 hasRelatedWork W4224009465 @default.
- W2553546178 hasVolume "8" @default.
- W2553546178 isParatext "false" @default.
- W2553546178 isRetracted "false" @default.
- W2553546178 magId "2553546178" @default.
- W2553546178 workType "article" @default.