Matches in SemOpenAlex for { <https://semopenalex.org/work/W2553676216> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2553676216 abstract "The developments in communication, sensor and computing technologies are generating information at increasing rates and the nature of the data is becoming highly heterogeneous. Accordingly, the objects under study are described by collections of variables of very different kinds (e.g. numeric, non-numeric, images, signals, videos, documents, etc.) with different degrees of imprecision and incompleteness. Many data mining and machine learning methods do not handle heterogeneity well, requiring variables of the same type, information completeness (or imputation), also assuming no imprecision. Extreme learning machines (ELM) are very interesting computational algorithms because of their structural simplicity, their good performance and their speed. Accordingly, extending their scope by making them capable of processing heterogeneous information may increase their attractiveness as a modeling tool for addressing complex problems. ELMs are discussed in the context of heterogeneous data and approaches to build ELMs capable of performing classification and regression tasks in such cases are presented. Their performance is illustrated with real world examples of classification and regression involving heterogeneous information with scalar data described by nominal, ordinal, interval, ratio, and fuzzy variables as well as with entire empirical probability distributions as predictor variables." @default.
- W2553676216 created "2016-11-30" @default.
- W2553676216 creator A5019572093 @default.
- W2553676216 date "2016-07-01" @default.
- W2553676216 modified "2023-09-26" @default.
- W2553676216 title "Heterogeneous extreme learning machines" @default.
- W2553676216 cites W1500823903 @default.
- W2553676216 cites W1557008515 @default.
- W2553676216 cites W1586799012 @default.
- W2553676216 cites W1587976434 @default.
- W2553676216 cites W1605328303 @default.
- W2553676216 cites W1782663906 @default.
- W2553676216 cites W1898437568 @default.
- W2553676216 cites W1966731082 @default.
- W2553676216 cites W1990938413 @default.
- W2553676216 cites W2025308802 @default.
- W2553676216 cites W2027142749 @default.
- W2553676216 cites W2028393179 @default.
- W2553676216 cites W2055526214 @default.
- W2553676216 cites W2056884786 @default.
- W2553676216 cites W2075630229 @default.
- W2553676216 cites W2082345029 @default.
- W2553676216 cites W2111072639 @default.
- W2553676216 cites W2112768365 @default.
- W2553676216 cites W2113902808 @default.
- W2553676216 cites W2122040390 @default.
- W2553676216 cites W2125865219 @default.
- W2553676216 cites W2137939562 @default.
- W2553676216 cites W2138950286 @default.
- W2553676216 cites W2141695047 @default.
- W2553676216 cites W2163952039 @default.
- W2553676216 cites W2168016899 @default.
- W2553676216 cites W2371587660 @default.
- W2553676216 cites W3024958026 @default.
- W2553676216 cites W3120740533 @default.
- W2553676216 cites W398759745 @default.
- W2553676216 cites W426455260 @default.
- W2553676216 cites W71703342 @default.
- W2553676216 cites W77427629 @default.
- W2553676216 doi "https://doi.org/10.1109/ijcnn.2016.7727400" @default.
- W2553676216 hasPublicationYear "2016" @default.
- W2553676216 type Work @default.
- W2553676216 sameAs 2553676216 @default.
- W2553676216 citedByCount "0" @default.
- W2553676216 crossrefType "proceedings-article" @default.
- W2553676216 hasAuthorship W2553676216A5019572093 @default.
- W2553676216 hasConcept C119857082 @default.
- W2553676216 hasConcept C124101348 @default.
- W2553676216 hasConcept C154945302 @default.
- W2553676216 hasConcept C2780150128 @default.
- W2553676216 hasConcept C41008148 @default.
- W2553676216 hasConcept C50644808 @default.
- W2553676216 hasConcept C58041806 @default.
- W2553676216 hasConcept C9357733 @default.
- W2553676216 hasConceptScore W2553676216C119857082 @default.
- W2553676216 hasConceptScore W2553676216C124101348 @default.
- W2553676216 hasConceptScore W2553676216C154945302 @default.
- W2553676216 hasConceptScore W2553676216C2780150128 @default.
- W2553676216 hasConceptScore W2553676216C41008148 @default.
- W2553676216 hasConceptScore W2553676216C50644808 @default.
- W2553676216 hasConceptScore W2553676216C58041806 @default.
- W2553676216 hasConceptScore W2553676216C9357733 @default.
- W2553676216 hasLocation W25536762161 @default.
- W2553676216 hasOpenAccess W2553676216 @default.
- W2553676216 hasPrimaryLocation W25536762161 @default.
- W2553676216 hasRelatedWork W1832039926 @default.
- W2553676216 hasRelatedWork W1990620793 @default.
- W2553676216 hasRelatedWork W2058475745 @default.
- W2553676216 hasRelatedWork W2080555645 @default.
- W2553676216 hasRelatedWork W2126353769 @default.
- W2553676216 hasRelatedWork W2138048316 @default.
- W2553676216 hasRelatedWork W2151447451 @default.
- W2553676216 hasRelatedWork W2742922252 @default.
- W2553676216 hasRelatedWork W2744527439 @default.
- W2553676216 hasRelatedWork W2754811960 @default.
- W2553676216 hasRelatedWork W2912906542 @default.
- W2553676216 hasRelatedWork W2914704764 @default.
- W2553676216 hasRelatedWork W2945885813 @default.
- W2553676216 hasRelatedWork W2954959644 @default.
- W2553676216 hasRelatedWork W3097760447 @default.
- W2553676216 hasRelatedWork W3118537478 @default.
- W2553676216 hasRelatedWork W3134865308 @default.
- W2553676216 hasRelatedWork W3210452439 @default.
- W2553676216 hasRelatedWork W33026131 @default.
- W2553676216 hasRelatedWork W646250375 @default.
- W2553676216 isParatext "false" @default.
- W2553676216 isRetracted "false" @default.
- W2553676216 magId "2553676216" @default.
- W2553676216 workType "article" @default.