Matches in SemOpenAlex for { <https://semopenalex.org/work/W2553885151> ?p ?o ?g. }
- W2553885151 abstract "CONTINUOUS MICROCELLULAR FOAMING OF POLYLACTIC ACID/NATURAL FIBER COMPOSITES By Carlos A. Diaz-Acosta Poly(lactic acid) (PLA), a biodegradable thermoplastic derived from renewable resources, stands out as a substitute to petroleum-based plastics. In spite of its excellent properties, commercial applications are limited because PLA is more expensive and more brittle than traditional petroleum-based resins. PLA can be blended with cellulosic fibers to reduce material cost. However, the lowered cost comes at the expense of flexibility and impact strength, which can be enhanced through the production of microcellular structures in the composite. Microcellular foaming uses inert gases (e.g., carbon dioxide) as physical blowing agents to make cellular structures with bubble sizes of less than 10 μm and cell-population densities (number of bubbles per unit volume) greater than 10 9 cells/cm 3 . These unique characteristics result in a significant increase in toughness and elongation at break (ductility) compared with unfoamed parts because the presence of small bubbles can blunt the crack-tips increasing the energy needed to propagate the crack. Microcellular foams have been produced through a two step batch process. First, large amounts of gas are dissolved in the solid plastic under high pressure (sorption process) to form a single-phase solution. Second, a thermodynamic instability (sudden drop in solubility) triggers cell nucleation and growth as the gas diffuses out of the plastic. Batch production of microcellular PLA has addressed some of the drawbacks of PLA. Unfortunately, the batch foaming process is not likely to be implemented in the industrial production of foams because it is not cost-effective. This study investigated the continuous microcellular foaming process of PLA and PLA/wood-fiber composites. The effects of the processing temperature and material compositions on the melt viscosity, pressure drop rate, and cell-population density were examined in order to understand the nucleation mechanisms in neat and filled PLA foams. The results indicated that the processing temperature had a strong effect of the rheology of the melt and cell morphology. Processing at a lower temperature significantly increased the cell nucleation rate of neat PLA (amorphous and semi-crystalline) because of the fact that a high melt viscosity induced a high pressure drop rate in the polymer/gas solution. The presence of nanoclay did not affect the homogeneous nucleation but increased the heterogeneous nucleation, allowing both nucleation mechanisms to occur during the foaming process. The effect of wood-flour (0-30 wt.%) and rheology modifier contents on the melt viscosity and cell morphology of microcellular foamed composites was investigated. The viscosity of the melt increased with wood-flour content and decreased with rheology modifier content, affecting the processing conditions (i.e., pressure drop and pressure drop rate) and foamability of the composites. Matching the viscosity of the composites with that of neat PLA resulted in the best cell morphologies. Physico-mechanical characterization of microcellular foamed PLA as a function of cell morphology was performed to establish process-morphology-property relationships. The processing variables, i.e., amount of gas injected, flow rate, and processing temperature affected the development of the cellular structure and mechanical properties of the foams. iv Dedicated to my parents Aurelio Diaz and Carmen J. Acosta" @default.
- W2553885151 created "2016-11-30" @default.
- W2553885151 creator A5014133960 @default.
- W2553885151 date "2011-01-01" @default.
- W2553885151 modified "2023-09-27" @default.
- W2553885151 title "CONTINUOUS MICROCELLULAR FOAMING OF POLYLACTIC ACID/NATURAL FIBER COMPOSITES" @default.
- W2553885151 cites W1490456592 @default.
- W2553885151 cites W1520891405 @default.
- W2553885151 cites W1596949018 @default.
- W2553885151 cites W1901492685 @default.
- W2553885151 cites W1968291734 @default.
- W2553885151 cites W1971520852 @default.
- W2553885151 cites W1972958036 @default.
- W2553885151 cites W1973013911 @default.
- W2553885151 cites W1973905161 @default.
- W2553885151 cites W1978961677 @default.
- W2553885151 cites W1981315183 @default.
- W2553885151 cites W1982772124 @default.
- W2553885151 cites W1984920951 @default.
- W2553885151 cites W1986172311 @default.
- W2553885151 cites W1986212257 @default.
- W2553885151 cites W1995902935 @default.
- W2553885151 cites W1995966957 @default.
- W2553885151 cites W2011262637 @default.
- W2553885151 cites W2017540578 @default.
- W2553885151 cites W2022813992 @default.
- W2553885151 cites W2029328436 @default.
- W2553885151 cites W2033053137 @default.
- W2553885151 cites W2033575253 @default.
- W2553885151 cites W2033810119 @default.
- W2553885151 cites W2034069904 @default.
- W2553885151 cites W2034084932 @default.
- W2553885151 cites W2040372567 @default.
- W2553885151 cites W2042750833 @default.
- W2553885151 cites W2043637403 @default.
- W2553885151 cites W2045202778 @default.
- W2553885151 cites W2046525895 @default.
- W2553885151 cites W2054432898 @default.
- W2553885151 cites W2055850204 @default.
- W2553885151 cites W2061538061 @default.
- W2553885151 cites W2064438493 @default.
- W2553885151 cites W2066938695 @default.
- W2553885151 cites W2071895301 @default.
- W2553885151 cites W2075149018 @default.
- W2553885151 cites W2077041042 @default.
- W2553885151 cites W2077071308 @default.
- W2553885151 cites W2078912663 @default.
- W2553885151 cites W2079813749 @default.
- W2553885151 cites W2081692215 @default.
- W2553885151 cites W2082909177 @default.
- W2553885151 cites W2082916791 @default.
- W2553885151 cites W2083108374 @default.
- W2553885151 cites W2086974529 @default.
- W2553885151 cites W2088195676 @default.
- W2553885151 cites W2093720977 @default.
- W2553885151 cites W2097887196 @default.
- W2553885151 cites W2104856922 @default.
- W2553885151 cites W2106295610 @default.
- W2553885151 cites W2106541860 @default.
- W2553885151 cites W2113173104 @default.
- W2553885151 cites W2121672782 @default.
- W2553885151 cites W2122387940 @default.
- W2553885151 cites W2129115415 @default.
- W2553885151 cites W2134518681 @default.
- W2553885151 cites W2138224449 @default.
- W2553885151 cites W2156917215 @default.
- W2553885151 cites W2159437976 @default.
- W2553885151 cites W2161949554 @default.
- W2553885151 cites W2163304606 @default.
- W2553885151 cites W2485127762 @default.
- W2553885151 cites W2525380149 @default.
- W2553885151 cites W40301670 @default.
- W2553885151 cites W652209596 @default.
- W2553885151 cites W1793492684 @default.
- W2553885151 hasPublicationYear "2011" @default.
- W2553885151 type Work @default.
- W2553885151 sameAs 2553885151 @default.
- W2553885151 citedByCount "0" @default.
- W2553885151 crossrefType "journal-article" @default.
- W2553885151 hasAuthorship W2553885151A5014133960 @default.
- W2553885151 hasConcept C100806243 @default.
- W2553885151 hasConcept C118419359 @default.
- W2553885151 hasConcept C159985019 @default.
- W2553885151 hasConcept C178790620 @default.
- W2553885151 hasConcept C185592680 @default.
- W2553885151 hasConcept C192562407 @default.
- W2553885151 hasConcept C2779578285 @default.
- W2553885151 hasConcept C2781162966 @default.
- W2553885151 hasConcept C521977710 @default.
- W2553885151 hasConcept C61048295 @default.
- W2553885151 hasConcept C99595764 @default.
- W2553885151 hasConceptScore W2553885151C100806243 @default.
- W2553885151 hasConceptScore W2553885151C118419359 @default.
- W2553885151 hasConceptScore W2553885151C159985019 @default.
- W2553885151 hasConceptScore W2553885151C178790620 @default.
- W2553885151 hasConceptScore W2553885151C185592680 @default.
- W2553885151 hasConceptScore W2553885151C192562407 @default.
- W2553885151 hasConceptScore W2553885151C2779578285 @default.
- W2553885151 hasConceptScore W2553885151C2781162966 @default.
- W2553885151 hasConceptScore W2553885151C521977710 @default.