Matches in SemOpenAlex for { <https://semopenalex.org/work/W2554857382> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2554857382 abstract "Tarnauceanu [Archiv der Mathematik, 102 (1), (2014), 11--14] gave a characterisation of elementary abelian $2$-groups in terms of their maximal sum-free sets. His theorem states that a finite group $G$ is an elementary abelian $2$-group if and only if the set of maximal sum-free sets coincides with the set of complements of the maximal subgroups. A corollary is that the number of maximal sum-free sets in an elementary abelian $2$-group of finite rank $n$ is $2^n-1$. Regretfully, we show here that the theorem is wrong. We then prove a correct version of the theorem from which the desired corollary can be deduced. Moreover, we give a characterisation of elementary abelian $3$-groups in terms of their maximal sum-free sets. A corollary to our result is that the number of maximal sum-free sets in an elementary abelian $3$-group of finite rank $n$ is $3^n-1$. Finally, for prime $p>3$ and $nin mathbb{N}$, we show that there is no direct analogue of this result for elementary abelian $p$-groups of finite rank $n$." @default.
- W2554857382 created "2016-11-30" @default.
- W2554857382 creator A5012185027 @default.
- W2554857382 date "2016-11-20" @default.
- W2554857382 modified "2023-09-27" @default.
- W2554857382 title "A characterisation of elementary abelian 3-groups" @default.
- W2554857382 cites W2006118148 @default.
- W2554857382 cites W2013251430 @default.
- W2554857382 cites W2022981432 @default.
- W2554857382 cites W2049319277 @default.
- W2554857382 cites W2107371055 @default.
- W2554857382 cites W2912205456 @default.
- W2554857382 hasPublicationYear "2016" @default.
- W2554857382 type Work @default.
- W2554857382 sameAs 2554857382 @default.
- W2554857382 citedByCount "0" @default.
- W2554857382 crossrefType "posted-content" @default.
- W2554857382 hasAuthorship W2554857382A5012185027 @default.
- W2554857382 hasConcept C114614502 @default.
- W2554857382 hasConcept C118615104 @default.
- W2554857382 hasConcept C121332964 @default.
- W2554857382 hasConcept C136170076 @default.
- W2554857382 hasConcept C14669601 @default.
- W2554857382 hasConcept C163572010 @default.
- W2554857382 hasConcept C164226766 @default.
- W2554857382 hasConcept C170124329 @default.
- W2554857382 hasConcept C184992742 @default.
- W2554857382 hasConcept C197623797 @default.
- W2554857382 hasConcept C200681373 @default.
- W2554857382 hasConcept C2777478746 @default.
- W2554857382 hasConcept C2780012671 @default.
- W2554857382 hasConcept C2781311116 @default.
- W2554857382 hasConcept C33923547 @default.
- W2554857382 hasConcept C62520636 @default.
- W2554857382 hasConcept C81008192 @default.
- W2554857382 hasConceptScore W2554857382C114614502 @default.
- W2554857382 hasConceptScore W2554857382C118615104 @default.
- W2554857382 hasConceptScore W2554857382C121332964 @default.
- W2554857382 hasConceptScore W2554857382C136170076 @default.
- W2554857382 hasConceptScore W2554857382C14669601 @default.
- W2554857382 hasConceptScore W2554857382C163572010 @default.
- W2554857382 hasConceptScore W2554857382C164226766 @default.
- W2554857382 hasConceptScore W2554857382C170124329 @default.
- W2554857382 hasConceptScore W2554857382C184992742 @default.
- W2554857382 hasConceptScore W2554857382C197623797 @default.
- W2554857382 hasConceptScore W2554857382C200681373 @default.
- W2554857382 hasConceptScore W2554857382C2777478746 @default.
- W2554857382 hasConceptScore W2554857382C2780012671 @default.
- W2554857382 hasConceptScore W2554857382C2781311116 @default.
- W2554857382 hasConceptScore W2554857382C33923547 @default.
- W2554857382 hasConceptScore W2554857382C62520636 @default.
- W2554857382 hasConceptScore W2554857382C81008192 @default.
- W2554857382 hasLocation W25548573821 @default.
- W2554857382 hasOpenAccess W2554857382 @default.
- W2554857382 hasPrimaryLocation W25548573821 @default.
- W2554857382 hasRelatedWork W1511144217 @default.
- W2554857382 hasRelatedWork W1643561589 @default.
- W2554857382 hasRelatedWork W1971295898 @default.
- W2554857382 hasRelatedWork W1983596197 @default.
- W2554857382 hasRelatedWork W1983735493 @default.
- W2554857382 hasRelatedWork W1987273428 @default.
- W2554857382 hasRelatedWork W1999186941 @default.
- W2554857382 hasRelatedWork W2043055027 @default.
- W2554857382 hasRelatedWork W2050864593 @default.
- W2554857382 hasRelatedWork W2051223427 @default.
- W2554857382 hasRelatedWork W2059660033 @default.
- W2554857382 hasRelatedWork W2069152542 @default.
- W2554857382 hasRelatedWork W2075080009 @default.
- W2554857382 hasRelatedWork W2081348568 @default.
- W2554857382 hasRelatedWork W2100908947 @default.
- W2554857382 hasRelatedWork W2125579664 @default.
- W2554857382 hasRelatedWork W2161965145 @default.
- W2554857382 hasRelatedWork W2328522533 @default.
- W2554857382 hasRelatedWork W2389994562 @default.
- W2554857382 hasRelatedWork W3147995771 @default.
- W2554857382 isParatext "false" @default.
- W2554857382 isRetracted "false" @default.
- W2554857382 magId "2554857382" @default.
- W2554857382 workType "article" @default.