Matches in SemOpenAlex for { <https://semopenalex.org/work/W2554914241> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2554914241 endingPage "119" @default.
- W2554914241 startingPage "112" @default.
- W2554914241 abstract "Analysis of large networks is of interest to many disciplines. Full network data are often hard to collect, storage and analyze. In particular, in many social science surveys, ego nomination techniques have been used to collect the egocentric networks of the randomly sampled survey respondents. In this paper, we propose a sample-GLMLE method that fits exponential random graph models (ERGM) to such sampled egocentric networks. It is an extension of a previous graph-limit based maximum likelihood estimation (GLMLE) method for full network that uses graphon to bridge the estimation of ERGM using observed network data. In this paper, we provide solutions to computational issues that are unique to sampled network data and evaluate the proposed method using simulations. We also apply sample-GLMLE to the public-use set of the National Longitudinal Study of Adolescent Health (AddHealth) study." @default.
- W2554914241 created "2016-11-30" @default.
- W2554914241 creator A5032038866 @default.
- W2554914241 creator A5044625906 @default.
- W2554914241 date "2016-08-18" @default.
- W2554914241 modified "2023-10-16" @default.
- W2554914241 title "Estimating exponential random graph models using sampled network data via graphon" @default.
- W2554914241 cites W107938046 @default.
- W2554914241 cites W1490110780 @default.
- W2554914241 cites W1573937741 @default.
- W2554914241 cites W1788531841 @default.
- W2554914241 cites W1979264045 @default.
- W2554914241 cites W2011039300 @default.
- W2554914241 cites W2019537770 @default.
- W2554914241 cites W2069412834 @default.
- W2554914241 cites W2069739265 @default.
- W2554914241 cites W2071321532 @default.
- W2554914241 cites W2082734581 @default.
- W2554914241 cites W2096141816 @default.
- W2554914241 cites W2111754130 @default.
- W2554914241 cites W2124612503 @default.
- W2554914241 cites W2135838082 @default.
- W2554914241 cites W2159009490 @default.
- W2554914241 cites W2160268549 @default.
- W2554914241 cites W2168322240 @default.
- W2554914241 cites W229097380 @default.
- W2554914241 cites W3099640877 @default.
- W2554914241 cites W78804727 @default.
- W2554914241 doi "https://doi.org/10.5555/3192424.3192446" @default.
- W2554914241 hasPublicationYear "2016" @default.
- W2554914241 type Work @default.
- W2554914241 sameAs 2554914241 @default.
- W2554914241 citedByCount "0" @default.
- W2554914241 crossrefType "proceedings-article" @default.
- W2554914241 hasAuthorship W2554914241A5032038866 @default.
- W2554914241 hasAuthorship W2554914241A5044625906 @default.
- W2554914241 hasConcept C104122410 @default.
- W2554914241 hasConcept C124101348 @default.
- W2554914241 hasConcept C132525143 @default.
- W2554914241 hasConcept C185592680 @default.
- W2554914241 hasConcept C198531522 @default.
- W2554914241 hasConcept C199360897 @default.
- W2554914241 hasConcept C2778029271 @default.
- W2554914241 hasConcept C30549945 @default.
- W2554914241 hasConcept C41008148 @default.
- W2554914241 hasConcept C43617362 @default.
- W2554914241 hasConcept C47458327 @default.
- W2554914241 hasConcept C80444323 @default.
- W2554914241 hasConceptScore W2554914241C104122410 @default.
- W2554914241 hasConceptScore W2554914241C124101348 @default.
- W2554914241 hasConceptScore W2554914241C132525143 @default.
- W2554914241 hasConceptScore W2554914241C185592680 @default.
- W2554914241 hasConceptScore W2554914241C198531522 @default.
- W2554914241 hasConceptScore W2554914241C199360897 @default.
- W2554914241 hasConceptScore W2554914241C2778029271 @default.
- W2554914241 hasConceptScore W2554914241C30549945 @default.
- W2554914241 hasConceptScore W2554914241C41008148 @default.
- W2554914241 hasConceptScore W2554914241C43617362 @default.
- W2554914241 hasConceptScore W2554914241C47458327 @default.
- W2554914241 hasConceptScore W2554914241C80444323 @default.
- W2554914241 hasLocation W25549142411 @default.
- W2554914241 hasOpenAccess W2554914241 @default.
- W2554914241 hasPrimaryLocation W25549142411 @default.
- W2554914241 hasRelatedWork W1480348078 @default.
- W2554914241 hasRelatedWork W16005079 @default.
- W2554914241 hasRelatedWork W1969121032 @default.
- W2554914241 hasRelatedWork W1991393592 @default.
- W2554914241 hasRelatedWork W2063127585 @default.
- W2554914241 hasRelatedWork W2089920503 @default.
- W2554914241 hasRelatedWork W2386930561 @default.
- W2554914241 hasRelatedWork W2404531977 @default.
- W2554914241 hasRelatedWork W2415265127 @default.
- W2554914241 hasRelatedWork W2607175545 @default.
- W2554914241 hasRelatedWork W2797528849 @default.
- W2554914241 hasRelatedWork W2900726470 @default.
- W2554914241 hasRelatedWork W2953067633 @default.
- W2554914241 hasRelatedWork W3101256477 @default.
- W2554914241 hasRelatedWork W3103168990 @default.
- W2554914241 hasRelatedWork W3115482011 @default.
- W2554914241 hasRelatedWork W3134137072 @default.
- W2554914241 hasRelatedWork W3178324164 @default.
- W2554914241 hasRelatedWork W2714662133 @default.
- W2554914241 hasRelatedWork W2931361532 @default.
- W2554914241 isParatext "false" @default.
- W2554914241 isRetracted "false" @default.
- W2554914241 magId "2554914241" @default.
- W2554914241 workType "article" @default.