Matches in SemOpenAlex for { <https://semopenalex.org/work/W2554944218> ?p ?o ?g. }
- W2554944218 endingPage "74" @default.
- W2554944218 startingPage "63" @default.
- W2554944218 abstract "Most cancer patients, including patients with breast cancer, experience multiple symptoms simultaneously while receiving active treatment. Some symptoms tend to occur together and may be related, such as hot flashes and night sweats. Co-occurring symptoms may have a multiplicative effect on patients' functioning, mental health, and quality of life. Symptom clusters in the context of oncology were originally described as groups of three or more related symptoms. Some authors have suggested symptom clusters may have practical applications, such as the formulation of more effective therapeutic interventions that address the combined effects of symptoms rather than treating each symptom separately. Most studies that have sought to identify clusters in breast cancer survivors have relied on traditional research studies. Social media, such as online health-related forums, contain a bevy of user-generated content in the form of threads and posts, and could be used as a data source to identify and characterize symptom clusters among cancer patients. The present study seeks to determine patterns of symptom clusters in breast cancer survivors derived from both social media and research study data using improved K-Medoid clustering. A total of 50,426 publicly available messages were collected from Medhelp.com and 653 questionnaires were collected as part of a research study. The network of symptoms built from social media was sparse compared to that of the research study data, making the social media data easier to partition. The proposed revised K-Medoid clustering helps to improve the clustering performance by re-assigning some of the negative-ASW (average silhouette width) symptoms to other clusters after initial K-Medoid clustering. This retains an overall non-decreasing ASW and avoids the problem of trapping in local optima. The overall ASW, individual ASW, and improved interpretation of the final clustering solution suggest improvement. The clustering results suggest that some symptom clusters are consistent across social media data and clinical data, such as gastrointestinal (GI) related symptoms, menopausal symptoms, mood-change symptoms, cognitive impairment and pain-related symptoms. We recommend an integrative approach taking advantage of both data sources. Social media data could provide context for the interpretation of clustering results derived from research study data, while research study data could compensate for the risk of lower precision and recall found using social media data." @default.
- W2554944218 created "2016-11-30" @default.
- W2554944218 creator A5014927953 @default.
- W2554944218 creator A5024795182 @default.
- W2554944218 creator A5047553143 @default.
- W2554944218 creator A5083179380 @default.
- W2554944218 creator A5086292931 @default.
- W2554944218 date "2016-06-01" @default.
- W2554944218 modified "2023-10-14" @default.
- W2554944218 title "Breast Cancer Symptom Clusters Derived From Social Media and Research Study Data Using Improved $K$ -Medoid Clustering" @default.
- W2554944218 cites W147865766 @default.
- W2554944218 cites W1789804267 @default.
- W2554944218 cites W1841433433 @default.
- W2554944218 cites W1963755872 @default.
- W2554944218 cites W1965208523 @default.
- W2554944218 cites W1968397321 @default.
- W2554944218 cites W1969375247 @default.
- W2554944218 cites W1969625852 @default.
- W2554944218 cites W1970663690 @default.
- W2554944218 cites W1971867342 @default.
- W2554944218 cites W1977111639 @default.
- W2554944218 cites W1987581851 @default.
- W2554944218 cites W1987971958 @default.
- W2554944218 cites W1994361113 @default.
- W2554944218 cites W2006962844 @default.
- W2554944218 cites W2010636619 @default.
- W2554944218 cites W2014743195 @default.
- W2554944218 cites W2017817556 @default.
- W2554944218 cites W2029162929 @default.
- W2554944218 cites W2029619507 @default.
- W2554944218 cites W2029833201 @default.
- W2554944218 cites W2033107736 @default.
- W2554944218 cites W2045318856 @default.
- W2554944218 cites W2047007339 @default.
- W2554944218 cites W2054106961 @default.
- W2554944218 cites W2068181924 @default.
- W2554944218 cites W2071478164 @default.
- W2554944218 cites W2071903262 @default.
- W2554944218 cites W2091198939 @default.
- W2554944218 cites W2104410836 @default.
- W2554944218 cites W2104971581 @default.
- W2554944218 cites W2110646369 @default.
- W2554944218 cites W2116728892 @default.
- W2554944218 cites W2125269912 @default.
- W2554944218 cites W2130363090 @default.
- W2554944218 cites W2136946304 @default.
- W2554944218 cites W2150944910 @default.
- W2554944218 cites W2155914559 @default.
- W2554944218 cites W2162766079 @default.
- W2554944218 cites W2167090973 @default.
- W2554944218 cites W2168511402 @default.
- W2554944218 cites W2172263659 @default.
- W2554944218 cites W2197566569 @default.
- W2554944218 cites W2247463656 @default.
- W2554944218 cites W2404878504 @default.
- W2554944218 cites W31187365 @default.
- W2554944218 doi "https://doi.org/10.1109/tcss.2016.2615850" @default.
- W2554944218 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5687581" @default.
- W2554944218 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29152536" @default.
- W2554944218 hasPublicationYear "2016" @default.
- W2554944218 type Work @default.
- W2554944218 sameAs 2554944218 @default.
- W2554944218 citedByCount "21" @default.
- W2554944218 countsByYear W25549442182017 @default.
- W2554944218 countsByYear W25549442182019 @default.
- W2554944218 countsByYear W25549442182020 @default.
- W2554944218 countsByYear W25549442182021 @default.
- W2554944218 countsByYear W25549442182022 @default.
- W2554944218 countsByYear W25549442182023 @default.
- W2554944218 crossrefType "journal-article" @default.
- W2554944218 hasAuthorship W2554944218A5014927953 @default.
- W2554944218 hasAuthorship W2554944218A5024795182 @default.
- W2554944218 hasAuthorship W2554944218A5047553143 @default.
- W2554944218 hasAuthorship W2554944218A5083179380 @default.
- W2554944218 hasAuthorship W2554944218A5086292931 @default.
- W2554944218 hasBestOaLocation W25549442181 @default.
- W2554944218 hasConcept C118552586 @default.
- W2554944218 hasConcept C119857082 @default.
- W2554944218 hasConcept C121608353 @default.
- W2554944218 hasConcept C126322002 @default.
- W2554944218 hasConcept C136764020 @default.
- W2554944218 hasConcept C15744967 @default.
- W2554944218 hasConcept C164866538 @default.
- W2554944218 hasConcept C166957645 @default.
- W2554944218 hasConcept C199360897 @default.
- W2554944218 hasConcept C205649164 @default.
- W2554944218 hasConcept C27415008 @default.
- W2554944218 hasConcept C2779343474 @default.
- W2554944218 hasConcept C2779951463 @default.
- W2554944218 hasConcept C41008148 @default.
- W2554944218 hasConcept C518677369 @default.
- W2554944218 hasConcept C530470458 @default.
- W2554944218 hasConcept C542102704 @default.
- W2554944218 hasConcept C63085389 @default.
- W2554944218 hasConcept C71924100 @default.
- W2554944218 hasConcept C73555534 @default.
- W2554944218 hasConceptScore W2554944218C118552586 @default.
- W2554944218 hasConceptScore W2554944218C119857082 @default.