Matches in SemOpenAlex for { <https://semopenalex.org/work/W2555242775> ?p ?o ?g. }
- W2555242775 endingPage "144" @default.
- W2555242775 startingPage "131" @default.
- W2555242775 abstract "Multi-Criteria Decision Analysis (MCDA) enables decision makers (DM) and decision analysts (DA) to analyse and understand decision situations in a structured and formalised way. With the increasing complexity of decision support systems (DSSs), it becomes challenging for both expert and novice users to understand and interpret the model results. Natural language generation (NLG) techniques are used in various DSSs to cope with this challenge as they reduce the cognitive effort to achieve understanding of decision situations. However, NLG techniques in MCDA have so far mainly been developed for deterministic decision situations or one-dimensional sensitivity analyses. In this paper, a concept for the generation of textual explanations for a multi-dimensional preferential sensitivity analysis in MCDA is developed. The key contribution is a NLG approach that provides detailed explanations of the implications of preferential uncertainties in Multi-Attribute Value Theory (MAVT). It generates a report that assesses the influences of simultaneous or separate variations of inter-criteria and intra-criteria preferential parameters determined within the decision analysis. We explore the added value of the natural language report in an online survey. Our results show that the NLG approach is particularly beneficial for difficult interpretational tasks." @default.
- W2555242775 created "2016-11-30" @default.
- W2555242775 creator A5014077937 @default.
- W2555242775 creator A5022636804 @default.
- W2555242775 date "2017-10-01" @default.
- W2555242775 modified "2023-09-25" @default.
- W2555242775 title "A natural language generation approach to support understanding and traceability of multi-dimensional preferential sensitivity analysis in multi-criteria decision making" @default.
- W2555242775 cites W1480715147 @default.
- W2555242775 cites W1576620340 @default.
- W2555242775 cites W1748537427 @default.
- W2555242775 cites W1965172015 @default.
- W2555242775 cites W1965470998 @default.
- W2555242775 cites W1966434644 @default.
- W2555242775 cites W1968034212 @default.
- W2555242775 cites W1968246386 @default.
- W2555242775 cites W1972394506 @default.
- W2555242775 cites W1975710864 @default.
- W2555242775 cites W1978078764 @default.
- W2555242775 cites W1979474742 @default.
- W2555242775 cites W1981207893 @default.
- W2555242775 cites W1984349989 @default.
- W2555242775 cites W1985610876 @default.
- W2555242775 cites W1985954499 @default.
- W2555242775 cites W1988999326 @default.
- W2555242775 cites W1998002692 @default.
- W2555242775 cites W1999985502 @default.
- W2555242775 cites W2001513986 @default.
- W2555242775 cites W2001670239 @default.
- W2555242775 cites W2007532157 @default.
- W2555242775 cites W2014089538 @default.
- W2555242775 cites W2015240128 @default.
- W2555242775 cites W2017775817 @default.
- W2555242775 cites W2018637572 @default.
- W2555242775 cites W2020927202 @default.
- W2555242775 cites W2022223144 @default.
- W2555242775 cites W2023284896 @default.
- W2555242775 cites W2024275175 @default.
- W2555242775 cites W2027342001 @default.
- W2555242775 cites W2027383624 @default.
- W2555242775 cites W2028634889 @default.
- W2555242775 cites W2029176610 @default.
- W2555242775 cites W2031648200 @default.
- W2555242775 cites W2040381688 @default.
- W2555242775 cites W2040689732 @default.
- W2555242775 cites W2043037029 @default.
- W2555242775 cites W2043405083 @default.
- W2555242775 cites W2051165371 @default.
- W2555242775 cites W2051202352 @default.
- W2555242775 cites W2057288929 @default.
- W2555242775 cites W2059597939 @default.
- W2555242775 cites W2065204972 @default.
- W2555242775 cites W2065854499 @default.
- W2555242775 cites W2070358688 @default.
- W2555242775 cites W2074466695 @default.
- W2555242775 cites W2075567596 @default.
- W2555242775 cites W2077266255 @default.
- W2555242775 cites W2082378390 @default.
- W2555242775 cites W2082959259 @default.
- W2555242775 cites W2083722668 @default.
- W2555242775 cites W2083969889 @default.
- W2555242775 cites W2085576551 @default.
- W2555242775 cites W2086891387 @default.
- W2555242775 cites W2087989620 @default.
- W2555242775 cites W2088657354 @default.
- W2555242775 cites W2093158282 @default.
- W2555242775 cites W2094894014 @default.
- W2555242775 cites W2111495793 @default.
- W2555242775 cites W2118061494 @default.
- W2555242775 cites W2135973196 @default.
- W2555242775 cites W2145964516 @default.
- W2555242775 cites W2146096861 @default.
- W2555242775 cites W2161149459 @default.
- W2555242775 cites W2163284121 @default.
- W2555242775 cites W2163600070 @default.
- W2555242775 cites W2165477019 @default.
- W2555242775 cites W2168743349 @default.
- W2555242775 cites W2171543997 @default.
- W2555242775 cites W2259352500 @default.
- W2555242775 cites W2290195878 @default.
- W2555242775 cites W2795831070 @default.
- W2555242775 cites W4211007335 @default.
- W2555242775 doi "https://doi.org/10.1016/j.eswa.2017.04.041" @default.
- W2555242775 hasPublicationYear "2017" @default.
- W2555242775 type Work @default.
- W2555242775 sameAs 2555242775 @default.
- W2555242775 citedByCount "11" @default.
- W2555242775 countsByYear W25552427752018 @default.
- W2555242775 countsByYear W25552427752019 @default.
- W2555242775 countsByYear W25552427752020 @default.
- W2555242775 countsByYear W25552427752022 @default.
- W2555242775 countsByYear W25552427752023 @default.
- W2555242775 crossrefType "journal-article" @default.
- W2555242775 hasAuthorship W2555242775A5014077937 @default.
- W2555242775 hasAuthorship W2555242775A5022636804 @default.
- W2555242775 hasBestOaLocation W25552427752 @default.
- W2555242775 hasConcept C105795698 @default.
- W2555242775 hasConcept C107327155 @default.
- W2555242775 hasConcept C11105738 @default.