Matches in SemOpenAlex for { <https://semopenalex.org/work/W2555335304> ?p ?o ?g. }
- W2555335304 endingPage "1508" @default.
- W2555335304 startingPage "1501" @default.
- W2555335304 abstract "In this paper, an experimental study and modeling by artificial neural networks were carried out to predict the generated microdroplet dimensionless size in a microfluidic system in order to formulate a water-in-oil emulsion. The various parameters that affect the size of microdroplets (flow rates, viscosities, surface tensions of both the two phases and the diameter of the microchannel) are studied and further grouped into dimensionless numbers; we used these numbers as input to the neural network and the dimensionless length as output. The better neural network architecture has 10 neurons in the hidden layer with a mean square error of 1.4 10−6 and a determination’s coefficient near 1 value. The relative importance of inputs on the size of the microdroplets has been determined using the Garson algorithm and the results are in good agreement with other works." @default.
- W2555335304 created "2016-11-30" @default.
- W2555335304 creator A5053035441 @default.
- W2555335304 creator A5087882020 @default.
- W2555335304 date "2016-11-11" @default.
- W2555335304 modified "2023-10-06" @default.
- W2555335304 title "Microdroplet size prediction in microfluidic systems via artificial neural network modeling for water-in-oil emulsion formulation" @default.
- W2555335304 cites W1967388671 @default.
- W2555335304 cites W1974865504 @default.
- W2555335304 cites W1975330940 @default.
- W2555335304 cites W1977474363 @default.
- W2555335304 cites W1981233250 @default.
- W2555335304 cites W1995979590 @default.
- W2555335304 cites W2003756933 @default.
- W2555335304 cites W2005092073 @default.
- W2555335304 cites W2009434334 @default.
- W2555335304 cites W2022368399 @default.
- W2555335304 cites W2038618090 @default.
- W2555335304 cites W2046305752 @default.
- W2555335304 cites W2049147925 @default.
- W2555335304 cites W2054107481 @default.
- W2555335304 cites W2062573677 @default.
- W2555335304 cites W2064210914 @default.
- W2555335304 cites W2069203749 @default.
- W2555335304 cites W2070982862 @default.
- W2555335304 cites W2071319032 @default.
- W2555335304 cites W2071586469 @default.
- W2555335304 cites W2074809683 @default.
- W2555335304 cites W2109750595 @default.
- W2555335304 cites W2134686199 @default.
- W2555335304 cites W2141997834 @default.
- W2555335304 cites W2142423992 @default.
- W2555335304 cites W2159286549 @default.
- W2555335304 cites W2169932516 @default.
- W2555335304 cites W2230277770 @default.
- W2555335304 cites W2263411362 @default.
- W2555335304 cites W2265013993 @default.
- W2555335304 cites W2297290677 @default.
- W2555335304 cites W2363165088 @default.
- W2555335304 cites W2494273612 @default.
- W2555335304 cites W2520996533 @default.
- W2555335304 doi "https://doi.org/10.1080/01932691.2016.1257391" @default.
- W2555335304 hasPublicationYear "2016" @default.
- W2555335304 type Work @default.
- W2555335304 sameAs 2555335304 @default.
- W2555335304 citedByCount "31" @default.
- W2555335304 countsByYear W25553353042018 @default.
- W2555335304 countsByYear W25553353042019 @default.
- W2555335304 countsByYear W25553353042020 @default.
- W2555335304 countsByYear W25553353042021 @default.
- W2555335304 countsByYear W25553353042022 @default.
- W2555335304 countsByYear W25553353042023 @default.
- W2555335304 crossrefType "journal-article" @default.
- W2555335304 hasAuthorship W2555335304A5053035441 @default.
- W2555335304 hasAuthorship W2555335304A5087882020 @default.
- W2555335304 hasConcept C121332964 @default.
- W2555335304 hasConcept C127413603 @default.
- W2555335304 hasConcept C154945302 @default.
- W2555335304 hasConcept C171250308 @default.
- W2555335304 hasConcept C172120300 @default.
- W2555335304 hasConcept C186060115 @default.
- W2555335304 hasConcept C192562407 @default.
- W2555335304 hasConcept C24872484 @default.
- W2555335304 hasConcept C2778123984 @default.
- W2555335304 hasConcept C41008148 @default.
- W2555335304 hasConcept C42360764 @default.
- W2555335304 hasConcept C50644808 @default.
- W2555335304 hasConcept C57879066 @default.
- W2555335304 hasConcept C63662833 @default.
- W2555335304 hasConcept C8673954 @default.
- W2555335304 hasConcept C86803240 @default.
- W2555335304 hasConceptScore W2555335304C121332964 @default.
- W2555335304 hasConceptScore W2555335304C127413603 @default.
- W2555335304 hasConceptScore W2555335304C154945302 @default.
- W2555335304 hasConceptScore W2555335304C171250308 @default.
- W2555335304 hasConceptScore W2555335304C172120300 @default.
- W2555335304 hasConceptScore W2555335304C186060115 @default.
- W2555335304 hasConceptScore W2555335304C192562407 @default.
- W2555335304 hasConceptScore W2555335304C24872484 @default.
- W2555335304 hasConceptScore W2555335304C2778123984 @default.
- W2555335304 hasConceptScore W2555335304C41008148 @default.
- W2555335304 hasConceptScore W2555335304C42360764 @default.
- W2555335304 hasConceptScore W2555335304C50644808 @default.
- W2555335304 hasConceptScore W2555335304C57879066 @default.
- W2555335304 hasConceptScore W2555335304C63662833 @default.
- W2555335304 hasConceptScore W2555335304C8673954 @default.
- W2555335304 hasConceptScore W2555335304C86803240 @default.
- W2555335304 hasIssue "10" @default.
- W2555335304 hasLocation W25553353041 @default.
- W2555335304 hasOpenAccess W2555335304 @default.
- W2555335304 hasPrimaryLocation W25553353041 @default.
- W2555335304 hasRelatedWork W1986077337 @default.
- W2555335304 hasRelatedWork W2029182462 @default.
- W2555335304 hasRelatedWork W2034169651 @default.
- W2555335304 hasRelatedWork W2054746286 @default.
- W2555335304 hasRelatedWork W2144036294 @default.
- W2555335304 hasRelatedWork W2616916845 @default.
- W2555335304 hasRelatedWork W3173666314 @default.