Matches in SemOpenAlex for { <https://semopenalex.org/work/W2555898320> ?p ?o ?g. }
- W2555898320 abstract "Data representation is a fundamental task in machine learning. The representation of data affects the performance of the whole machine learning system. In a long history, the representation of data is done by feature engineering, and researchers aim at designing better features for specific tasks. Recently, the rapid development of deep learning and representation learning has brought new inspiration to various domains. In natural language processing, the most widely used feature representation is the Bag-of-Words model. This model has the data sparsity problem and cannot keep the word order information. Other features such as part-of-speech tagging or more complex syntax features can only fit for specific tasks in most cases. This thesis focuses on word representation and document representation. We compare the existing systems and present our new model. First, for generating word embeddings, we make comprehensive comparisons among existing word embedding models. In terms of theory, we figure out the relationship between the two most important models, i.e., Skip-gram and GloVe. In our experiments, we analyze three key points in generating word embeddings, including the model construction, the training corpus and parameter design. We evaluate word embeddings with three types of tasks, and we argue that they cover the existing use of word embeddings. Through theory and practical experiments, we present some guidelines for how to generate a good word embedding. Second, in Chinese character or word representation. We introduce the joint training of Chinese character and word. ... Third, for document representation, we analyze the existing document representation models, including recursive NNs, recurrent NNs and convolutional NNs. We point out the drawbacks of these models and present our new model, the recurrent convolutional neural networks. ..." @default.
- W2555898320 created "2016-11-30" @default.
- W2555898320 creator A5028998188 @default.
- W2555898320 date "2016-11-17" @default.
- W2555898320 modified "2023-10-10" @default.
- W2555898320 title "Word and Document Embeddings based on Neural Network Approaches" @default.
- W2555898320 cites W1423339008 @default.
- W2555898320 cites W145476170 @default.
- W2555898320 cites W1486777056 @default.
- W2555898320 cites W1498740961 @default.
- W2555898320 cites W1499253590 @default.
- W2555898320 cites W1508567213 @default.
- W2555898320 cites W1582774210 @default.
- W2555898320 cites W1593239840 @default.
- W2555898320 cites W1596986901 @default.
- W2555898320 cites W1614298861 @default.
- W2555898320 cites W1615991656 @default.
- W2555898320 cites W1647429986 @default.
- W2555898320 cites W1662133657 @default.
- W2555898320 cites W169764183 @default.
- W2555898320 cites W1792926363 @default.
- W2555898320 cites W179875071 @default.
- W2555898320 cites W1826790618 @default.
- W2555898320 cites W1832693441 @default.
- W2555898320 cites W1889268436 @default.
- W2555898320 cites W1904365287 @default.
- W2555898320 cites W1934041838 @default.
- W2555898320 cites W196214544 @default.
- W2555898320 cites W1978394996 @default.
- W2555898320 cites W1980867644 @default.
- W2555898320 cites W1983578042 @default.
- W2555898320 cites W1984052055 @default.
- W2555898320 cites W1986707196 @default.
- W2555898320 cites W1996430422 @default.
- W2555898320 cites W2004915807 @default.
- W2555898320 cites W2005828695 @default.
- W2555898320 cites W2036516910 @default.
- W2555898320 cites W2053921957 @default.
- W2555898320 cites W2061212083 @default.
- W2555898320 cites W2064675550 @default.
- W2555898320 cites W2069143585 @default.
- W2555898320 cites W2091812280 @default.
- W2555898320 cites W2096071381 @default.
- W2555898320 cites W2097606805 @default.
- W2555898320 cites W2097732278 @default.
- W2555898320 cites W2099111195 @default.
- W2555898320 cites W2100495367 @default.
- W2555898320 cites W2101926813 @default.
- W2555898320 cites W2103305545 @default.
- W2555898320 cites W2107214119 @default.
- W2555898320 cites W2107878631 @default.
- W2555898320 cites W2110096996 @default.
- W2555898320 cites W2110485445 @default.
- W2555898320 cites W2112796928 @default.
- W2555898320 cites W2113378307 @default.
- W2555898320 cites W2113459411 @default.
- W2555898320 cites W2114524997 @default.
- W2555898320 cites W2117130368 @default.
- W2555898320 cites W2120615054 @default.
- W2555898320 cites W2121227244 @default.
- W2555898320 cites W2125031621 @default.
- W2555898320 cites W2125712079 @default.
- W2555898320 cites W2126502509 @default.
- W2555898320 cites W2127314673 @default.
- W2555898320 cites W2127426251 @default.
- W2555898320 cites W2129625650 @default.
- W2555898320 cites W2131462252 @default.
- W2555898320 cites W2131744502 @default.
- W2555898320 cites W2132166724 @default.
- W2555898320 cites W2132339004 @default.
- W2555898320 cites W2132961219 @default.
- W2555898320 cites W2133280805 @default.
- W2555898320 cites W2138204974 @default.
- W2555898320 cites W2138857742 @default.
- W2555898320 cites W2139621418 @default.
- W2555898320 cites W2140679639 @default.
- W2555898320 cites W2141599568 @default.
- W2555898320 cites W2141734078 @default.
- W2555898320 cites W2146502635 @default.
- W2555898320 cites W2149454052 @default.
- W2555898320 cites W2149557440 @default.
- W2555898320 cites W2149671658 @default.
- W2555898320 cites W2153579005 @default.
- W2555898320 cites W2154359981 @default.
- W2555898320 cites W2158028897 @default.
- W2555898320 cites W2158899491 @default.
- W2555898320 cites W2158997610 @default.
- W2555898320 cites W2160971205 @default.
- W2555898320 cites W2161498199 @default.
- W2555898320 cites W2163377725 @default.
- W2555898320 cites W2163455955 @default.
- W2555898320 cites W2163922914 @default.
- W2555898320 cites W2164019165 @default.
- W2555898320 cites W2168596788 @default.
- W2555898320 cites W2183945364 @default.
- W2555898320 cites W22168010 @default.
- W2555898320 cites W2233994034 @default.
- W2555898320 cites W2250521169 @default.
- W2555898320 cites W2251033195 @default.
- W2555898320 cites W2251803266 @default.