Matches in SemOpenAlex for { <https://semopenalex.org/work/W2556228748> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W2556228748 abstract "The integrand-level methods for the reduction of scattering amplitudes are powerful techniques for the analysis and the computation of loop integrals, which have already been successfully applied and automated at one-loop. Moreover, some very interesting progress has recently been made towards the higher-loop extension of such techniques. In this presentation, we review the basics principles of integrand-reduction methods within a coherent framework we developed, which can be applied to any integrand at any number of loops and is based on simple concepts of algebraic geometry, such as multivariate polynomial division. We particularly focus on semianalytic and algebraic techniques, such as the Laurent series expansion which we exploited to improve the one-loop reduction with the library NINJA, and the multi-loop divide-and-conquer approach which can always be used to find the integrand decomposition of any Feynman graph in a finite number of algebraic operations." @default.
- W2556228748 created "2016-11-30" @default.
- W2556228748 creator A5024220084 @default.
- W2556228748 creator A5050168572 @default.
- W2556228748 creator A5060757310 @default.
- W2556228748 creator A5072225969 @default.
- W2556228748 creator A5075012306 @default.
- W2556228748 creator A5081458681 @default.
- W2556228748 creator A5088869863 @default.
- W2556228748 date "2014-03-18" @default.
- W2556228748 modified "2023-10-16" @default.
- W2556228748 title "Integrand reduction at NLO and beyond" @default.
- W2556228748 doi "https://doi.org/10.22323/1.180.0449" @default.
- W2556228748 hasPublicationYear "2014" @default.
- W2556228748 type Work @default.
- W2556228748 sameAs 2556228748 @default.
- W2556228748 citedByCount "0" @default.
- W2556228748 crossrefType "proceedings-article" @default.
- W2556228748 hasAuthorship W2556228748A5024220084 @default.
- W2556228748 hasAuthorship W2556228748A5050168572 @default.
- W2556228748 hasAuthorship W2556228748A5060757310 @default.
- W2556228748 hasAuthorship W2556228748A5072225969 @default.
- W2556228748 hasAuthorship W2556228748A5075012306 @default.
- W2556228748 hasAuthorship W2556228748A5081458681 @default.
- W2556228748 hasAuthorship W2556228748A5088869863 @default.
- W2556228748 hasBestOaLocation W25562287481 @default.
- W2556228748 hasConcept C111335779 @default.
- W2556228748 hasConcept C121332964 @default.
- W2556228748 hasConcept C2524010 @default.
- W2556228748 hasConcept C33923547 @default.
- W2556228748 hasConcept C41008148 @default.
- W2556228748 hasConceptScore W2556228748C111335779 @default.
- W2556228748 hasConceptScore W2556228748C121332964 @default.
- W2556228748 hasConceptScore W2556228748C2524010 @default.
- W2556228748 hasConceptScore W2556228748C33923547 @default.
- W2556228748 hasConceptScore W2556228748C41008148 @default.
- W2556228748 hasLocation W25562287481 @default.
- W2556228748 hasOpenAccess W2556228748 @default.
- W2556228748 hasPrimaryLocation W25562287481 @default.
- W2556228748 hasRelatedWork W1536502753 @default.
- W2556228748 hasRelatedWork W2538049348 @default.
- W2556228748 hasRelatedWork W2748952813 @default.
- W2556228748 hasRelatedWork W2899084033 @default.
- W2556228748 hasRelatedWork W2935759653 @default.
- W2556228748 hasRelatedWork W3032668683 @default.
- W2556228748 hasRelatedWork W3105167352 @default.
- W2556228748 hasRelatedWork W54078636 @default.
- W2556228748 hasRelatedWork W1501425562 @default.
- W2556228748 hasRelatedWork W2954470139 @default.
- W2556228748 isParatext "false" @default.
- W2556228748 isRetracted "false" @default.
- W2556228748 magId "2556228748" @default.
- W2556228748 workType "article" @default.