Matches in SemOpenAlex for { <https://semopenalex.org/work/W2556310020> ?p ?o ?g. }
- W2556310020 endingPage "227" @default.
- W2556310020 startingPage "215" @default.
- W2556310020 abstract "Breast cancer is the most common invasive cancer among women and its incidence is increasing. Risk assessment is valuable and recent methods are incorporating novel biomarkers such as mammographic density. Artificial neural networks (ANN) are adaptive algorithms capable of performing pattern-to-pattern learning and are well suited for medical applications. They are potentially useful for calibrating full-field digital mammography (FFDM) for quantitative analysis. This study uses ANN modeling to estimate volumetric breast density (VBD) from FFDM on Japanese women with and without breast cancer. ANN calibration of VBD was performed using phantom data for one FFDM system. Mammograms of 46 Japanese women diagnosed with invasive carcinoma and 53 with negative findings were analyzed using ANN models learned. ANN-estimated VBD was validated against phantom data, compared intra-patient, with qualitative composition scoring, with MRI VBD, and inter-patient with classical risk factors of breast cancer as well as cancer status. Phantom validations reached an R 2 of 0.993. Intra-patient validations ranged from R 2 of 0.789 with VBD to 0.908 with breast volume. ANN VBD agreed well with BI-RADS scoring and MRI VBD with R 2 ranging from 0.665 with VBD to 0.852 with breast volume. VBD was significantly higher in women with cancer. Associations with age, BMI, menopause, and cancer status previously reported were also confirmed. ANN modeling appears to produce reasonable measures of mammographic density validated with phantoms, with existing measures of breast density, and with classical biomarkers of breast cancer. FFDM VBD is significantly higher in Japanese women with cancer." @default.
- W2556310020 created "2016-11-30" @default.
- W2556310020 creator A5007642188 @default.
- W2556310020 creator A5009237974 @default.
- W2556310020 creator A5020774876 @default.
- W2556310020 creator A5030887743 @default.
- W2556310020 creator A5031378296 @default.
- W2556310020 creator A5060221385 @default.
- W2556310020 creator A5061222029 @default.
- W2556310020 creator A5064403768 @default.
- W2556310020 date "2016-11-10" @default.
- W2556310020 modified "2023-09-23" @default.
- W2556310020 title "Automatic Estimation of Volumetric Breast Density Using Artificial Neural Network-Based Calibration of Full-Field Digital Mammography: Feasibility on Japanese Women With and Without Breast Cancer" @default.
- W2556310020 cites W1075124913 @default.
- W2556310020 cites W1485748895 @default.
- W2556310020 cites W1524892106 @default.
- W2556310020 cites W1574620960 @default.
- W2556310020 cites W1757407923 @default.
- W2556310020 cites W1780324370 @default.
- W2556310020 cites W1969818885 @default.
- W2556310020 cites W1978994822 @default.
- W2556310020 cites W1979727947 @default.
- W2556310020 cites W1984013746 @default.
- W2556310020 cites W1984694083 @default.
- W2556310020 cites W1987915768 @default.
- W2556310020 cites W1989265912 @default.
- W2556310020 cites W1995388182 @default.
- W2556310020 cites W1995752721 @default.
- W2556310020 cites W2002941893 @default.
- W2556310020 cites W2003416687 @default.
- W2556310020 cites W2011436239 @default.
- W2556310020 cites W2013840898 @default.
- W2556310020 cites W2022224592 @default.
- W2556310020 cites W2024124973 @default.
- W2556310020 cites W2031146167 @default.
- W2556310020 cites W2034876716 @default.
- W2556310020 cites W2035441406 @default.
- W2556310020 cites W2035901146 @default.
- W2556310020 cites W2038611739 @default.
- W2556310020 cites W2044029912 @default.
- W2556310020 cites W2051385775 @default.
- W2556310020 cites W2054421406 @default.
- W2556310020 cites W2059288984 @default.
- W2556310020 cites W2061132006 @default.
- W2556310020 cites W2063466265 @default.
- W2556310020 cites W2066185072 @default.
- W2556310020 cites W2068611090 @default.
- W2556310020 cites W2069816479 @default.
- W2556310020 cites W2093536466 @default.
- W2556310020 cites W2096663717 @default.
- W2556310020 cites W2098433299 @default.
- W2556310020 cites W2099644906 @default.
- W2556310020 cites W2100159406 @default.
- W2556310020 cites W2100288220 @default.
- W2556310020 cites W2107411682 @default.
- W2556310020 cites W2116930161 @default.
- W2556310020 cites W2120519513 @default.
- W2556310020 cites W2122202941 @default.
- W2556310020 cites W2126694781 @default.
- W2556310020 cites W2133923351 @default.
- W2556310020 cites W2134650356 @default.
- W2556310020 cites W2137983211 @default.
- W2556310020 cites W2139338111 @default.
- W2556310020 cites W2143186228 @default.
- W2556310020 cites W2143486088 @default.
- W2556310020 cites W2151613664 @default.
- W2556310020 cites W2156010365 @default.
- W2556310020 cites W2158660396 @default.
- W2556310020 cites W2160408484 @default.
- W2556310020 cites W2165664908 @default.
- W2556310020 doi "https://doi.org/10.1007/s10278-016-9922-9" @default.
- W2556310020 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5359207" @default.
- W2556310020 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27832519" @default.
- W2556310020 hasPublicationYear "2016" @default.
- W2556310020 type Work @default.
- W2556310020 sameAs 2556310020 @default.
- W2556310020 citedByCount "12" @default.
- W2556310020 countsByYear W25563100202017 @default.
- W2556310020 countsByYear W25563100202018 @default.
- W2556310020 countsByYear W25563100202019 @default.
- W2556310020 countsByYear W25563100202020 @default.
- W2556310020 countsByYear W25563100202022 @default.
- W2556310020 countsByYear W25563100202023 @default.
- W2556310020 crossrefType "journal-article" @default.
- W2556310020 hasAuthorship W2556310020A5007642188 @default.
- W2556310020 hasAuthorship W2556310020A5009237974 @default.
- W2556310020 hasAuthorship W2556310020A5020774876 @default.
- W2556310020 hasAuthorship W2556310020A5030887743 @default.
- W2556310020 hasAuthorship W2556310020A5031378296 @default.
- W2556310020 hasAuthorship W2556310020A5060221385 @default.
- W2556310020 hasAuthorship W2556310020A5061222029 @default.
- W2556310020 hasAuthorship W2556310020A5064403768 @default.
- W2556310020 hasBestOaLocation W25563100202 @default.
- W2556310020 hasConcept C104293457 @default.
- W2556310020 hasConcept C121608353 @default.
- W2556310020 hasConcept C126322002 @default.
- W2556310020 hasConcept C126838900 @default.
- W2556310020 hasConcept C2777432617 @default.