Matches in SemOpenAlex for { <https://semopenalex.org/work/W2556473504> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2556473504 abstract "Due to the growing amount of data generated and stored in relational databases, relational learning has attracted the interest of researchers in recent years. Many approaches have been developed in order to learn relational data. One of the approaches used to learn relational data is Dynamic Aggregation of Relational Attributes (DARA). The DARA algorithm is designed to summarize relational data with one-to-many relations. However, DARA suffers a major drawback when the cardinalities of attributes are very high because the size of the vector space representation depends on the number of unique values that exist for all attributes in the dataset. A feature selection process can be introduced to overcome this problem. These selected features can be further optimized to achieve a good classification result. Several clustering runs can be performed for different values of k to yield an ensemble of clustering results. This paper proposes a two-layered genetic algorithm-based feature selection in order to improve the classification performance of learning relational database using a k-NN ensemble classifier. The proposed method involves the task of omitting less relevant features but retaining the diversity of the classifiers so as to improve the performance of the k-NN ensemble. The result shows that the proposed k-NN ensemble is able to improve the performance of traditional k-NN classifiers." @default.
- W2556473504 created "2016-11-30" @default.
- W2556473504 creator A5038733651 @default.
- W2556473504 creator A5040895210 @default.
- W2556473504 creator A5061777284 @default.
- W2556473504 creator A5066113990 @default.
- W2556473504 creator A5075117788 @default.
- W2556473504 creator A5084298478 @default.
- W2556473504 date "2016-11-12" @default.
- W2556473504 modified "2023-10-11" @default.
- W2556473504 title "k-Nearest Neighbour Using Ensemble Clustering Based on Feature Selection Approach to Learning Relational Data" @default.
- W2556473504 cites W1497163089 @default.
- W2556473504 cites W1498034582 @default.
- W2556473504 cites W1552114005 @default.
- W2556473504 cites W1996824494 @default.
- W2556473504 cites W2015401436 @default.
- W2556473504 cites W2016556800 @default.
- W2556473504 cites W2025876282 @default.
- W2556473504 cites W2033852320 @default.
- W2556473504 cites W2112176619 @default.
- W2556473504 cites W2119387367 @default.
- W2556473504 cites W2122111042 @default.
- W2556473504 cites W2126185296 @default.
- W2556473504 cites W2135293965 @default.
- W2556473504 cites W2161631032 @default.
- W2556473504 cites W67838932 @default.
- W2556473504 doi "https://doi.org/10.1007/978-3-319-49073-1_35" @default.
- W2556473504 hasPublicationYear "2016" @default.
- W2556473504 type Work @default.
- W2556473504 sameAs 2556473504 @default.
- W2556473504 citedByCount "0" @default.
- W2556473504 crossrefType "book-chapter" @default.
- W2556473504 hasAuthorship W2556473504A5038733651 @default.
- W2556473504 hasAuthorship W2556473504A5040895210 @default.
- W2556473504 hasAuthorship W2556473504A5061777284 @default.
- W2556473504 hasAuthorship W2556473504A5066113990 @default.
- W2556473504 hasAuthorship W2556473504A5075117788 @default.
- W2556473504 hasAuthorship W2556473504A5084298478 @default.
- W2556473504 hasConcept C113238511 @default.
- W2556473504 hasConcept C119857082 @default.
- W2556473504 hasConcept C124101348 @default.
- W2556473504 hasConcept C148483581 @default.
- W2556473504 hasConcept C153180895 @default.
- W2556473504 hasConcept C154945302 @default.
- W2556473504 hasConcept C177877439 @default.
- W2556473504 hasConcept C41008148 @default.
- W2556473504 hasConcept C45942800 @default.
- W2556473504 hasConcept C5655090 @default.
- W2556473504 hasConcept C73555534 @default.
- W2556473504 hasConcept C83665646 @default.
- W2556473504 hasConcept C95623464 @default.
- W2556473504 hasConceptScore W2556473504C113238511 @default.
- W2556473504 hasConceptScore W2556473504C119857082 @default.
- W2556473504 hasConceptScore W2556473504C124101348 @default.
- W2556473504 hasConceptScore W2556473504C148483581 @default.
- W2556473504 hasConceptScore W2556473504C153180895 @default.
- W2556473504 hasConceptScore W2556473504C154945302 @default.
- W2556473504 hasConceptScore W2556473504C177877439 @default.
- W2556473504 hasConceptScore W2556473504C41008148 @default.
- W2556473504 hasConceptScore W2556473504C45942800 @default.
- W2556473504 hasConceptScore W2556473504C5655090 @default.
- W2556473504 hasConceptScore W2556473504C73555534 @default.
- W2556473504 hasConceptScore W2556473504C83665646 @default.
- W2556473504 hasConceptScore W2556473504C95623464 @default.
- W2556473504 hasLocation W25564735041 @default.
- W2556473504 hasOpenAccess W2556473504 @default.
- W2556473504 hasPrimaryLocation W25564735041 @default.
- W2556473504 hasRelatedWork W1517456234 @default.
- W2556473504 hasRelatedWork W1553258895 @default.
- W2556473504 hasRelatedWork W2101977550 @default.
- W2556473504 hasRelatedWork W2348536626 @default.
- W2556473504 hasRelatedWork W2787881961 @default.
- W2556473504 hasRelatedWork W2899609300 @default.
- W2556473504 hasRelatedWork W2913849398 @default.
- W2556473504 hasRelatedWork W2951053257 @default.
- W2556473504 hasRelatedWork W2955280778 @default.
- W2556473504 hasRelatedWork W2994156981 @default.
- W2556473504 hasRelatedWork W3014176075 @default.
- W2556473504 hasRelatedWork W3016033536 @default.
- W2556473504 hasRelatedWork W3080556782 @default.
- W2556473504 hasRelatedWork W3110302621 @default.
- W2556473504 hasRelatedWork W3112119468 @default.
- W2556473504 hasRelatedWork W60613460 @default.
- W2556473504 hasRelatedWork W1839141770 @default.
- W2556473504 hasRelatedWork W2107374133 @default.
- W2556473504 hasRelatedWork W2184903956 @default.
- W2556473504 hasRelatedWork W2396388420 @default.
- W2556473504 isParatext "false" @default.
- W2556473504 isRetracted "false" @default.
- W2556473504 magId "2556473504" @default.
- W2556473504 workType "book-chapter" @default.