Matches in SemOpenAlex for { <https://semopenalex.org/work/W2556555060> ?p ?o ?g. }
Showing items 1 to 47 of
47
with 100 items per page.
- W2556555060 endingPage "73" @default.
- W2556555060 startingPage "1" @default.
- W2556555060 abstract "We consider the standard two-party communication model. The central problem studied in this article is how much can one save in information complexity by allowing an error of e.• For arbitrary functions, we obtain lower bounds and upper bounds indicating a gain that is of order Ω(h(e)) and [EQUATION]. Here h denotes the binary entropy function.• We analyze the case of the two-bit AND function in detail to show that for this function the gain is Θ(h(e)). This answers a question of Braverman et al. [4].• We obtain sharp bounds for the set disjointness function of order n. For the case of the distributional error, we introduce a new protocol that achieves a gain of [EQUATION] provided that n is sufficiently large. We apply these results to answer another of question of Braverman et al. regarding the randomized communication complexity of the set disjointness function.• Answering a question of Braverman [3], we apply our analysis of the set disjointness function to establish a gap between the two different notions of the prior-free information cost. In light of [3], this implies that amortized randomized communication complexity is not necessarily equal to the amortized distributional communication complexity with respect to the hardest distribution.As a consequence, we show that the e-error randomized communication complexity of the set disjointness function of order n is n[Cdisj − Θ(h(e))] + o(n), where Cdisj ≈ 0.4827 is the constant found by Braverman et al. [4]." @default.
- W2556555060 created "2016-11-30" @default.
- W2556555060 creator A5036969610 @default.
- W2556555060 creator A5047362769 @default.
- W2556555060 creator A5060352361 @default.
- W2556555060 creator A5084547602 @default.
- W2556555060 date "2018-01-01" @default.
- W2556555060 modified "2023-10-16" @default.
- W2556555060 doi "https://doi.org/10.4086/toc.2018.v014a006" @default.
- W2556555060 hasPublicationYear "2018" @default.
- W2556555060 type Work @default.
- W2556555060 sameAs 2556555060 @default.
- W2556555060 citedByCount "3" @default.
- W2556555060 countsByYear W25565550602018 @default.
- W2556555060 countsByYear W25565550602020 @default.
- W2556555060 countsByYear W25565550602022 @default.
- W2556555060 crossrefType "journal-article" @default.
- W2556555060 hasAuthorship W2556555060A5036969610 @default.
- W2556555060 hasAuthorship W2556555060A5047362769 @default.
- W2556555060 hasAuthorship W2556555060A5060352361 @default.
- W2556555060 hasAuthorship W2556555060A5084547602 @default.
- W2556555060 hasBestOaLocation W25565550601 @default.
- W2556555060 hasConcept C33923547 @default.
- W2556555060 hasConcept C41008148 @default.
- W2556555060 hasConceptScore W2556555060C33923547 @default.
- W2556555060 hasConceptScore W2556555060C41008148 @default.
- W2556555060 hasIssue "1" @default.
- W2556555060 hasLocation W25565550601 @default.
- W2556555060 hasOpenAccess W2556555060 @default.
- W2556555060 hasPrimaryLocation W25565550601 @default.
- W2556555060 hasRelatedWork W1974891317 @default.
- W2556555060 hasRelatedWork W2007596026 @default.
- W2556555060 hasRelatedWork W2044189972 @default.
- W2556555060 hasRelatedWork W2069964982 @default.
- W2556555060 hasRelatedWork W2313400459 @default.
- W2556555060 hasRelatedWork W2748952813 @default.
- W2556555060 hasRelatedWork W2899084033 @default.
- W2556555060 hasRelatedWork W2913765211 @default.
- W2556555060 hasRelatedWork W4225152035 @default.
- W2556555060 hasRelatedWork W4245490552 @default.
- W2556555060 hasVolume "14" @default.
- W2556555060 isParatext "false" @default.
- W2556555060 isRetracted "false" @default.
- W2556555060 magId "2556555060" @default.
- W2556555060 workType "article" @default.