Matches in SemOpenAlex for { <https://semopenalex.org/work/W2556654651> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2556654651 abstract "This thesis concerns the design, development, and implementation of machine learning models for voice separation in two forms of symbolic music representations: lute tablature and MIDI data. Three modelling approaches are described: MA1, a note-level classification approach using a neural network, MA2, a chord-level regression approach using a neural network, and MA3, a chord-level probabilistic approach using a hidden Markov model. Furthermore, three model extensions are presented: backward processing, modelling voice and duration simultaneously, and multi-pass processing using an extended (bidirectional) decision context.Two datasets are created for model evaluation: a tablature dataset, containing a total of 15 three-voice and four-voice intabulations (lute arrangements of polyphonic vocal works) in a custom-made tablature encoding format, tab+, as well as in MIDI format, and a Bach dataset, containing the 45 three-voice and four-voice fugues from Johann Sebastian Bach’s _Das wohltemperirte Clavier_ (BWV 846-893) in MIDI format. The datasets are made available publicly, as is the software used to implement the models and the framework for training and evaluating them.The models are evaluated on the datasets in four experiments. The first experiment, where the different modelling approaches are compared, shows that MA1 is the most effective and efficient approach. The second experiment shows that the features are effective, and it demonstrates the importance of the type and amount of context information that is encoded in the feature vectors. The third experiment, which concerns model extension, shows that modelling backward and modelling voice and duration simultaneously do not lead to the hypothesised increase in model performance, but that using a multi-pass bidirectional model does. In the last experiment, where the performance of the models is compared with that of existing state-of-the-art systems for voice separation, it is shown that the models described in this thesis can compete with these systems." @default.
- W2556654651 created "2016-11-30" @default.
- W2556654651 creator A5061270172 @default.
- W2556654651 date "2015-01-01" @default.
- W2556654651 modified "2023-09-27" @default.
- W2556654651 title "Structuring lute tablature and MIDI data: Machine learning models for voice separation in symbolic music representations" @default.
- W2556654651 hasPublicationYear "2015" @default.
- W2556654651 type Work @default.
- W2556654651 sameAs 2556654651 @default.
- W2556654651 citedByCount "1" @default.
- W2556654651 countsByYear W25566546512018 @default.
- W2556654651 crossrefType "dissertation" @default.
- W2556654651 hasAuthorship W2556654651A5061270172 @default.
- W2556654651 hasConcept C111919701 @default.
- W2556654651 hasConcept C119857082 @default.
- W2556654651 hasConcept C120314980 @default.
- W2556654651 hasConcept C142362112 @default.
- W2556654651 hasConcept C151730666 @default.
- W2556654651 hasConcept C153349607 @default.
- W2556654651 hasConcept C154945302 @default.
- W2556654651 hasConcept C194147245 @default.
- W2556654651 hasConcept C204321447 @default.
- W2556654651 hasConcept C23224414 @default.
- W2556654651 hasConcept C2779343474 @default.
- W2556654651 hasConcept C28490314 @default.
- W2556654651 hasConcept C34259666 @default.
- W2556654651 hasConcept C409758 @default.
- W2556654651 hasConcept C41008148 @default.
- W2556654651 hasConcept C50644808 @default.
- W2556654651 hasConcept C558565934 @default.
- W2556654651 hasConcept C8112396 @default.
- W2556654651 hasConcept C86803240 @default.
- W2556654651 hasConceptScore W2556654651C111919701 @default.
- W2556654651 hasConceptScore W2556654651C119857082 @default.
- W2556654651 hasConceptScore W2556654651C120314980 @default.
- W2556654651 hasConceptScore W2556654651C142362112 @default.
- W2556654651 hasConceptScore W2556654651C151730666 @default.
- W2556654651 hasConceptScore W2556654651C153349607 @default.
- W2556654651 hasConceptScore W2556654651C154945302 @default.
- W2556654651 hasConceptScore W2556654651C194147245 @default.
- W2556654651 hasConceptScore W2556654651C204321447 @default.
- W2556654651 hasConceptScore W2556654651C23224414 @default.
- W2556654651 hasConceptScore W2556654651C2779343474 @default.
- W2556654651 hasConceptScore W2556654651C28490314 @default.
- W2556654651 hasConceptScore W2556654651C34259666 @default.
- W2556654651 hasConceptScore W2556654651C409758 @default.
- W2556654651 hasConceptScore W2556654651C41008148 @default.
- W2556654651 hasConceptScore W2556654651C50644808 @default.
- W2556654651 hasConceptScore W2556654651C558565934 @default.
- W2556654651 hasConceptScore W2556654651C8112396 @default.
- W2556654651 hasConceptScore W2556654651C86803240 @default.
- W2556654651 hasLocation W25566546511 @default.
- W2556654651 hasOpenAccess W2556654651 @default.
- W2556654651 hasPrimaryLocation W25566546511 @default.
- W2556654651 hasRelatedWork W1519384422 @default.
- W2556654651 hasRelatedWork W1888154959 @default.
- W2556654651 hasRelatedWork W1980497326 @default.
- W2556654651 hasRelatedWork W2090040637 @default.
- W2556654651 hasRelatedWork W2114708606 @default.
- W2556654651 hasRelatedWork W2181334933 @default.
- W2556654651 hasRelatedWork W2564488164 @default.
- W2556654651 hasRelatedWork W2772474126 @default.
- W2556654651 hasRelatedWork W2945460072 @default.
- W2556654651 hasRelatedWork W2949521714 @default.
- W2556654651 hasRelatedWork W2981402174 @default.
- W2556654651 hasRelatedWork W3001545112 @default.
- W2556654651 hasRelatedWork W3010903955 @default.
- W2556654651 hasRelatedWork W3098670224 @default.
- W2556654651 hasRelatedWork W3104096215 @default.
- W2556654651 hasRelatedWork W3104144488 @default.
- W2556654651 hasRelatedWork W3187406677 @default.
- W2556654651 hasRelatedWork W3211964829 @default.
- W2556654651 hasRelatedWork W377540871 @default.
- W2556654651 hasRelatedWork W4928837 @default.
- W2556654651 isParatext "false" @default.
- W2556654651 isRetracted "false" @default.
- W2556654651 magId "2556654651" @default.
- W2556654651 workType "dissertation" @default.