Matches in SemOpenAlex for { <https://semopenalex.org/work/W2557094964> ?p ?o ?g. }
- W2557094964 endingPage "79" @default.
- W2557094964 startingPage "71" @default.
- W2557094964 abstract "Short rotation woody crop (SRWC) systems continue to be investigated as energy crops for a range of energy products including liquid biofuels and electricity. To understand their market potential and economic viability, regional biomass yield and production estimates are used as primary inputs. Biomass is generally estimated using growth models which often utilize gridded weather datasets when implemented for regional simulations. With such models, the accuracy of weather data will affect the uncertainty of estimated biomass and subsequent bioenergy analyses. This study evaluates the biases in weather variables of commonly used high resolution gridded datasets including PRISM, Daymet, NARR, and NLDAS in comparison with observed weather at five flux tower stations. Further, impacts of inaccuracies in gridded data sources on biomass estimates of SRWC hybrid poplar was investigated at site and regional levels using a version of the 3-PG growth model modified to model production with multiple harvests through coppicing or periodic cutting of the trees with regrowth from the tree stump. Results suggest that weather variables in all gridded datasets are characterized by some degree of bias leading to considerable bias in biomass estimates, in some cases up to 45%. PRISM and Daymet were shown to have lower uncertainty in most of the weather variables, likely due to their higher spatial resolution and higher dependency on station weather. Site level simulations indicate that relative to the reference biomass estimates based on actual weather measurements, NARR data yielded 4.1 Mg ha−1 y−1 higher biomass while NLDAS, Daymet, and PRISM resulted in 3.3, 1.2 and 0.3 Mg ha−1 y−1 lower biomass. Regional simulations suggest that total biomass varied substantially with gridded data sources ranging between 47.4 and 58.3 Tg on the croplands and rangelands in the region (Columbia Plateau), which subsequently led up to 23% variation in the estimate of poplar based jet fuel production from the SRWC resource. Therefore, findings of this study reinforce the need to account for uncertainties in biomass estimates introduced by biases in gridded weather when modeling bioenergy production." @default.
- W2557094964 created "2016-11-30" @default.
- W2557094964 creator A5028795031 @default.
- W2557094964 creator A5040274227 @default.
- W2557094964 creator A5061635161 @default.
- W2557094964 creator A5069105711 @default.
- W2557094964 date "2017-02-01" @default.
- W2557094964 modified "2023-09-27" @default.
- W2557094964 title "Impact of biases in gridded weather datasets on biomass estimates of short rotation woody cropping systems" @default.
- W2557094964 cites W1515826731 @default.
- W2557094964 cites W1540432255 @default.
- W2557094964 cites W1652656859 @default.
- W2557094964 cites W1875655620 @default.
- W2557094964 cites W1898919587 @default.
- W2557094964 cites W1966334841 @default.
- W2557094964 cites W1995047010 @default.
- W2557094964 cites W1995268122 @default.
- W2557094964 cites W2006564295 @default.
- W2557094964 cites W2009344272 @default.
- W2557094964 cites W2010951708 @default.
- W2557094964 cites W2012608318 @default.
- W2557094964 cites W2016769009 @default.
- W2557094964 cites W2025130417 @default.
- W2557094964 cites W2031925862 @default.
- W2557094964 cites W2033481223 @default.
- W2557094964 cites W2035417834 @default.
- W2557094964 cites W2036849472 @default.
- W2557094964 cites W2037664038 @default.
- W2557094964 cites W2042740165 @default.
- W2557094964 cites W2043230261 @default.
- W2557094964 cites W2046345516 @default.
- W2557094964 cites W2050014045 @default.
- W2557094964 cites W2051922073 @default.
- W2557094964 cites W2053373089 @default.
- W2557094964 cites W2062539120 @default.
- W2557094964 cites W2065859187 @default.
- W2557094964 cites W2075267366 @default.
- W2557094964 cites W2084739228 @default.
- W2557094964 cites W2090222584 @default.
- W2557094964 cites W2091143805 @default.
- W2557094964 cites W2101967167 @default.
- W2557094964 cites W2103746536 @default.
- W2557094964 cites W2105103805 @default.
- W2557094964 cites W2111205969 @default.
- W2557094964 cites W2111480700 @default.
- W2557094964 cites W2122210246 @default.
- W2557094964 cites W2126556678 @default.
- W2557094964 cites W2134604458 @default.
- W2557094964 cites W2143571693 @default.
- W2557094964 cites W2156544435 @default.
- W2557094964 cites W2159568833 @default.
- W2557094964 cites W2169193373 @default.
- W2557094964 cites W2171876032 @default.
- W2557094964 cites W2172213450 @default.
- W2557094964 cites W2173251738 @default.
- W2557094964 cites W2176060671 @default.
- W2557094964 cites W2262426693 @default.
- W2557094964 cites W2283001044 @default.
- W2557094964 cites W4231254910 @default.
- W2557094964 cites W631523926 @default.
- W2557094964 doi "https://doi.org/10.1016/j.agrformet.2016.11.008" @default.
- W2557094964 hasPublicationYear "2017" @default.
- W2557094964 type Work @default.
- W2557094964 sameAs 2557094964 @default.
- W2557094964 citedByCount "14" @default.
- W2557094964 countsByYear W25570949642018 @default.
- W2557094964 countsByYear W25570949642019 @default.
- W2557094964 countsByYear W25570949642020 @default.
- W2557094964 countsByYear W25570949642021 @default.
- W2557094964 countsByYear W25570949642022 @default.
- W2557094964 countsByYear W25570949642023 @default.
- W2557094964 crossrefType "journal-article" @default.
- W2557094964 hasAuthorship W2557094964A5028795031 @default.
- W2557094964 hasAuthorship W2557094964A5040274227 @default.
- W2557094964 hasAuthorship W2557094964A5061635161 @default.
- W2557094964 hasAuthorship W2557094964A5069105711 @default.
- W2557094964 hasBestOaLocation W25570949641 @default.
- W2557094964 hasConcept C103017160 @default.
- W2557094964 hasConcept C115540264 @default.
- W2557094964 hasConcept C127313418 @default.
- W2557094964 hasConcept C128758860 @default.
- W2557094964 hasConcept C153294291 @default.
- W2557094964 hasConcept C18903297 @default.
- W2557094964 hasConcept C205649164 @default.
- W2557094964 hasConcept C39432304 @default.
- W2557094964 hasConcept C49204034 @default.
- W2557094964 hasConcept C6557445 @default.
- W2557094964 hasConcept C86803240 @default.
- W2557094964 hasConcept C91586092 @default.
- W2557094964 hasConceptScore W2557094964C103017160 @default.
- W2557094964 hasConceptScore W2557094964C115540264 @default.
- W2557094964 hasConceptScore W2557094964C127313418 @default.
- W2557094964 hasConceptScore W2557094964C128758860 @default.
- W2557094964 hasConceptScore W2557094964C153294291 @default.
- W2557094964 hasConceptScore W2557094964C18903297 @default.
- W2557094964 hasConceptScore W2557094964C205649164 @default.
- W2557094964 hasConceptScore W2557094964C39432304 @default.
- W2557094964 hasConceptScore W2557094964C49204034 @default.