Matches in SemOpenAlex for { <https://semopenalex.org/work/W2557419383> ?p ?o ?g. }
- W2557419383 endingPage "8778" @default.
- W2557419383 startingPage "8762" @default.
- W2557419383 abstract "In this study we present a three-dimensional (3D) reconstruction algorithm for magneto-acoustic tomography with magnetic induction (MAT-MI) based on the characteristics of the ultrasound transducer. The algorithm is investigated to solve the blur problem of the MAT-MI acoustic source image, which is caused by the ultrasound transducer and the scanning geometry. First, we established a transducer model matrix using measured data from the real transducer. With reference to the S-L model used in the computed tomography algorithm, a 3D phantom model of electrical conductivity is set up. Both sphere scanning and cylinder scanning geometries are adopted in the computer simulation. Then, using finite element analysis, the distribution of the eddy current and the acoustic source as well as the acoustic pressure can be obtained with the transducer model matrix. Next, using singular value decomposition, the inverse transducer model matrix together with the reconstruction algorithm are worked out. The acoustic source and the conductivity images are reconstructed using the proposed algorithm. Comparisons between an ideal point transducer and the realistic transducer are made to evaluate the algorithms. Finally, an experiment is performed using a graphite phantom. We found that images of the acoustic source reconstructed using the proposed algorithm are a better match than those using the previous one, the correlation coefficient of sphere scanning geometry is 98.49% and that of cylinder scanning geometry is 94.96%. Comparison between the ideal point transducer and the realistic transducer shows that the correlation coefficients are 90.2% in sphere scanning geometry and 86.35% in cylinder scanning geometry. The reconstruction of the graphite phantom experiment also shows a higher resolution using the proposed algorithm. We conclude that the proposed reconstruction algorithm, which considers the characteristics of the transducer, can obviously improve the resolution of the reconstructed image. This study can be applied to analyse the effect of the position of the transducer and the scanning geometry on imaging. It may provide a more precise method to reconstruct the conductivity distribution in MAT-MI." @default.
- W2557419383 created "2016-12-08" @default.
- W2557419383 creator A5006964214 @default.
- W2557419383 creator A5049243695 @default.
- W2557419383 creator A5049894459 @default.
- W2557419383 creator A5060277223 @default.
- W2557419383 creator A5061432781 @default.
- W2557419383 date "2016-11-28" @default.
- W2557419383 modified "2023-10-16" @default.
- W2557419383 title "A 3D reconstruction algorithm for magneto-acoustic tomography with magnetic induction based on ultrasound transducer characteristics" @default.
- W2557419383 cites W1965899283 @default.
- W2557419383 cites W1981350565 @default.
- W2557419383 cites W1993725464 @default.
- W2557419383 cites W2000158623 @default.
- W2557419383 cites W2006719320 @default.
- W2557419383 cites W2008597709 @default.
- W2557419383 cites W2029594206 @default.
- W2557419383 cites W2032245014 @default.
- W2557419383 cites W2034649418 @default.
- W2557419383 cites W2038145003 @default.
- W2557419383 cites W2050261554 @default.
- W2557419383 cites W2058871194 @default.
- W2557419383 cites W2061406259 @default.
- W2557419383 cites W2069760085 @default.
- W2557419383 cites W2076888466 @default.
- W2557419383 cites W2081687897 @default.
- W2557419383 cites W2084538189 @default.
- W2557419383 cites W2094480342 @default.
- W2557419383 cites W2095404624 @default.
- W2557419383 cites W2097897435 @default.
- W2557419383 cites W2115843483 @default.
- W2557419383 cites W2117490920 @default.
- W2557419383 cites W2121387357 @default.
- W2557419383 cites W2138003312 @default.
- W2557419383 cites W2147354348 @default.
- W2557419383 cites W2150385570 @default.
- W2557419383 cites W2286977336 @default.
- W2557419383 cites W2401451264 @default.
- W2557419383 cites W2748244846 @default.
- W2557419383 cites W4301621763 @default.
- W2557419383 doi "https://doi.org/10.1088/1361-6560/61/24/8762" @default.
- W2557419383 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27893440" @default.
- W2557419383 hasPublicationYear "2016" @default.
- W2557419383 type Work @default.
- W2557419383 sameAs 2557419383 @default.
- W2557419383 citedByCount "6" @default.
- W2557419383 countsByYear W25574193832018 @default.
- W2557419383 countsByYear W25574193832019 @default.
- W2557419383 countsByYear W25574193832020 @default.
- W2557419383 countsByYear W25574193832021 @default.
- W2557419383 countsByYear W25574193832023 @default.
- W2557419383 crossrefType "journal-article" @default.
- W2557419383 hasAuthorship W2557419383A5006964214 @default.
- W2557419383 hasAuthorship W2557419383A5049243695 @default.
- W2557419383 hasAuthorship W2557419383A5049894459 @default.
- W2557419383 hasAuthorship W2557419383A5060277223 @default.
- W2557419383 hasAuthorship W2557419383A5061432781 @default.
- W2557419383 hasConcept C104293457 @default.
- W2557419383 hasConcept C11413529 @default.
- W2557419383 hasConcept C120665830 @default.
- W2557419383 hasConcept C121332964 @default.
- W2557419383 hasConcept C141379421 @default.
- W2557419383 hasConcept C163716698 @default.
- W2557419383 hasConcept C192562407 @default.
- W2557419383 hasConcept C203311528 @default.
- W2557419383 hasConcept C24890656 @default.
- W2557419383 hasConcept C2524010 @default.
- W2557419383 hasConcept C2779898584 @default.
- W2557419383 hasConcept C31972630 @default.
- W2557419383 hasConcept C33923547 @default.
- W2557419383 hasConcept C41008148 @default.
- W2557419383 hasConcept C56318395 @default.
- W2557419383 hasConcept C81288441 @default.
- W2557419383 hasConceptScore W2557419383C104293457 @default.
- W2557419383 hasConceptScore W2557419383C11413529 @default.
- W2557419383 hasConceptScore W2557419383C120665830 @default.
- W2557419383 hasConceptScore W2557419383C121332964 @default.
- W2557419383 hasConceptScore W2557419383C141379421 @default.
- W2557419383 hasConceptScore W2557419383C163716698 @default.
- W2557419383 hasConceptScore W2557419383C192562407 @default.
- W2557419383 hasConceptScore W2557419383C203311528 @default.
- W2557419383 hasConceptScore W2557419383C24890656 @default.
- W2557419383 hasConceptScore W2557419383C2524010 @default.
- W2557419383 hasConceptScore W2557419383C2779898584 @default.
- W2557419383 hasConceptScore W2557419383C31972630 @default.
- W2557419383 hasConceptScore W2557419383C33923547 @default.
- W2557419383 hasConceptScore W2557419383C41008148 @default.
- W2557419383 hasConceptScore W2557419383C56318395 @default.
- W2557419383 hasConceptScore W2557419383C81288441 @default.
- W2557419383 hasFunder F4320321001 @default.
- W2557419383 hasIssue "24" @default.
- W2557419383 hasLocation W25574193831 @default.
- W2557419383 hasLocation W25574193832 @default.
- W2557419383 hasOpenAccess W2557419383 @default.
- W2557419383 hasPrimaryLocation W25574193831 @default.
- W2557419383 hasRelatedWork W2028327174 @default.
- W2557419383 hasRelatedWork W2041589945 @default.
- W2557419383 hasRelatedWork W2133506402 @default.