Matches in SemOpenAlex for { <https://semopenalex.org/work/W2557534345> ?p ?o ?g. }
- W2557534345 abstract "Visual object-tracking is a fundamental task applied in many applications of computer vision. Many different tracking algorithms have been used ranging from point-tracking, to kernel-tracking, to silhouette-tracking based on different appearance models chosen. This paper investigates the particle filter that is used as a tracking algorithm based on the Bayesian tracking framework. The problems that the particle filter tracking technique suffers from are degeneracy and the impoverishment degradation. These two issues are addressed by the use of Particle Swarm Optimization (PSO) as the sampling mechanism. In particular, particles are generated via the PSO process in order to estimate the importance distribution. Two density estimation methods are used, one is a parametric method using the Half-Normal distribution fitting, and the other is a non-parametric method using kernel density estimation. The experiments revealed that the non-parametric density estimation method combined with PSO outperforms the other comparison algorithms." @default.
- W2557534345 created "2016-12-08" @default.
- W2557534345 creator A5015130765 @default.
- W2557534345 creator A5072424706 @default.
- W2557534345 date "2016-07-01" @default.
- W2557534345 modified "2023-09-25" @default.
- W2557534345 title "Object-tracking based on particle filter using particle swarm optimization with density estimation" @default.
- W2557534345 cites W116417043 @default.
- W2557534345 cites W1539218308 @default.
- W2557534345 cites W1807914171 @default.
- W2557534345 cites W1963828038 @default.
- W2557534345 cites W1974800119 @default.
- W2557534345 cites W1984914017 @default.
- W2557534345 cites W1995903777 @default.
- W2557534345 cites W2002406878 @default.
- W2557534345 cites W2033927907 @default.
- W2557534345 cites W2064480843 @default.
- W2557534345 cites W2089961441 @default.
- W2557534345 cites W2098613108 @default.
- W2557534345 cites W2100214067 @default.
- W2557534345 cites W2106706098 @default.
- W2557534345 cites W2109579504 @default.
- W2557534345 cites W2113577207 @default.
- W2557534345 cites W2118741216 @default.
- W2557534345 cites W2126302311 @default.
- W2557534345 cites W2126736494 @default.
- W2557534345 cites W2129905273 @default.
- W2557534345 cites W2131598171 @default.
- W2557534345 cites W2139047213 @default.
- W2557534345 cites W2139386984 @default.
- W2557534345 cites W2150000644 @default.
- W2557534345 cites W2152195021 @default.
- W2557534345 cites W2160337655 @default.
- W2557534345 cites W2162383208 @default.
- W2557534345 cites W2162919312 @default.
- W2557534345 cites W2170858806 @default.
- W2557534345 cites W2613779721 @default.
- W2557534345 cites W2753461371 @default.
- W2557534345 cites W2963349082 @default.
- W2557534345 cites W2978836685 @default.
- W2557534345 cites W577274971 @default.
- W2557534345 doi "https://doi.org/10.1109/cec.2016.7744317" @default.
- W2557534345 hasPublicationYear "2016" @default.
- W2557534345 type Work @default.
- W2557534345 sameAs 2557534345 @default.
- W2557534345 citedByCount "9" @default.
- W2557534345 countsByYear W25575343452017 @default.
- W2557534345 countsByYear W25575343452018 @default.
- W2557534345 countsByYear W25575343452019 @default.
- W2557534345 countsByYear W25575343452020 @default.
- W2557534345 crossrefType "proceedings-article" @default.
- W2557534345 hasAuthorship W2557534345A5015130765 @default.
- W2557534345 hasAuthorship W2557534345A5072424706 @default.
- W2557534345 hasConcept C105795698 @default.
- W2557534345 hasConcept C106131492 @default.
- W2557534345 hasConcept C11413529 @default.
- W2557534345 hasConcept C114614502 @default.
- W2557534345 hasConcept C117251300 @default.
- W2557534345 hasConcept C126255220 @default.
- W2557534345 hasConcept C153180895 @default.
- W2557534345 hasConcept C154945302 @default.
- W2557534345 hasConcept C157286648 @default.
- W2557534345 hasConcept C15744967 @default.
- W2557534345 hasConcept C185429906 @default.
- W2557534345 hasConcept C189508267 @default.
- W2557534345 hasConcept C19417346 @default.
- W2557534345 hasConcept C202474056 @default.
- W2557534345 hasConcept C206833254 @default.
- W2557534345 hasConcept C2775936607 @default.
- W2557534345 hasConcept C2777727622 @default.
- W2557534345 hasConcept C2781238097 @default.
- W2557534345 hasConcept C31972630 @default.
- W2557534345 hasConcept C33923547 @default.
- W2557534345 hasConcept C41008148 @default.
- W2557534345 hasConcept C52421305 @default.
- W2557534345 hasConcept C52483021 @default.
- W2557534345 hasConcept C60644358 @default.
- W2557534345 hasConcept C71134354 @default.
- W2557534345 hasConcept C74193536 @default.
- W2557534345 hasConcept C79334102 @default.
- W2557534345 hasConcept C85617194 @default.
- W2557534345 hasConcept C86803240 @default.
- W2557534345 hasConceptScore W2557534345C105795698 @default.
- W2557534345 hasConceptScore W2557534345C106131492 @default.
- W2557534345 hasConceptScore W2557534345C11413529 @default.
- W2557534345 hasConceptScore W2557534345C114614502 @default.
- W2557534345 hasConceptScore W2557534345C117251300 @default.
- W2557534345 hasConceptScore W2557534345C126255220 @default.
- W2557534345 hasConceptScore W2557534345C153180895 @default.
- W2557534345 hasConceptScore W2557534345C154945302 @default.
- W2557534345 hasConceptScore W2557534345C157286648 @default.
- W2557534345 hasConceptScore W2557534345C15744967 @default.
- W2557534345 hasConceptScore W2557534345C185429906 @default.
- W2557534345 hasConceptScore W2557534345C189508267 @default.
- W2557534345 hasConceptScore W2557534345C19417346 @default.
- W2557534345 hasConceptScore W2557534345C202474056 @default.
- W2557534345 hasConceptScore W2557534345C206833254 @default.
- W2557534345 hasConceptScore W2557534345C2775936607 @default.
- W2557534345 hasConceptScore W2557534345C2777727622 @default.
- W2557534345 hasConceptScore W2557534345C2781238097 @default.