Matches in SemOpenAlex for { <https://semopenalex.org/work/W2557631903> ?p ?o ?g. }
- W2557631903 endingPage "196" @default.
- W2557631903 startingPage "181" @default.
- W2557631903 abstract "MEPS Marine Ecology Progress Series Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsTheme Sections MEPS 565:181-196 (2017) - DOI: https://doi.org/10.3354/meps11995 Niche metrics suggest euryhaline and coastal elasmobranchs provide trophic connections among marine and freshwater biomes in northern Australia Sharon L. Every1,2,3,*, Heidi R. Pethybridge4, Christopher J. Fulton3, Peter M. Kyne1, David A. Crook1 1Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory 0909, Australia 2North Australia Marine Research Alliance, Arafura-Timor Sea Research Facility, Brinkin, Northern Territory 0810, Australia 3Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia 4Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania 7000, Australia *Corresponding author: slevery2001@yahoo.com.au ABSTRACT: Tropical elasmobranchs could play significant roles in connecting coastal and river ecosystems, yet few studies have explored the trophic ecology of elasmobranch species that may link these biomes. We investigated the trophic niches of 7 such species in northern Australia during the tropical monsoonal wet and dry seasons, using stable carbon (δ13C) and nitrogen (δ15N) isotopes (SI), and fatty acid (FA) biomarkers taken from muscle tissue. Both SI and FA metrics suggested significant niche partitioning between species, with 2 distinct guilds: a marine food web based on epiphytes and seagrass (low δ13C), and an estuarine/freshwater food web with a seston base (higher δ13C). A large overlap in SI niche areas and higher mean trophic positions (4.1-4.8) were evident in species accessing marine diets (Carcharhinus leucas, Rhizoprionodon taylori) when compared with species predominantly feeding in estuaries (3.2-3.6; Glyphis garricki, G. glyphis). Across all seasons, G. garricki had the greatest FA niche space, and variable overlap with 2 other species (R. taylori, C. leucas). Although limited seasonal effects were apparent for individual FA biomarkers, SI niche metrics revealed greater niche areas and inter-specific partitioning during the dry season for 3 species. Subtle differences in niche metrics derived from SI and FAs were likely due to disparate turnover times, and the statistical approach of each metric (2-dimensional versus multi-dimensional). Collectively, our analyses suggest that these tropical coastal and euryhaline elasmobranchs consume prey from a range of sources to provide trophic connections across marine, estuarine and freshwater biomes. KEY WORDS: Niche metrics · Sharks · Glyphis · Carcharhinus · Rhizoprionodon · Biotracers · Stable isotopes · Fatty acids Full text in pdf format Supplementary material PreviousNextCite this article as: Every SL, Pethybridge HR, Fulton CJ, Kyne PM, Crook DA (2017) Niche metrics suggest euryhaline and coastal elasmobranchs provide trophic connections among marine and freshwater biomes in northern Australia. Mar Ecol Prog Ser 565:181-196. https://doi.org/10.3354/meps11995 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in MEPS Vol. 565. Online publication date: February 17, 2017 Print ISSN: 0171-8630; Online ISSN: 1616-1599 Copyright © 2017 Inter-Research." @default.
- W2557631903 created "2016-12-08" @default.
- W2557631903 creator A5017334107 @default.
- W2557631903 creator A5031194545 @default.
- W2557631903 creator A5057327132 @default.
- W2557631903 creator A5074016954 @default.
- W2557631903 creator A5086273156 @default.
- W2557631903 date "2017-02-17" @default.
- W2557631903 modified "2023-10-16" @default.
- W2557631903 title "Niche metrics suggest euryhaline and coastal elasmobranchs provide trophic connections among marine and freshwater biomes in northern Australia" @default.
- W2557631903 cites W124340556 @default.
- W2557631903 cites W1482940750 @default.
- W2557631903 cites W1580043097 @default.
- W2557631903 cites W1599377753 @default.
- W2557631903 cites W1601223168 @default.
- W2557631903 cites W1692197012 @default.
- W2557631903 cites W1758276717 @default.
- W2557631903 cites W1787724978 @default.
- W2557631903 cites W1881394269 @default.
- W2557631903 cites W1966211496 @default.
- W2557631903 cites W1972377608 @default.
- W2557631903 cites W1974887837 @default.
- W2557631903 cites W1980993953 @default.
- W2557631903 cites W1984921425 @default.
- W2557631903 cites W1986070237 @default.
- W2557631903 cites W1992998624 @default.
- W2557631903 cites W2000457174 @default.
- W2557631903 cites W2001496822 @default.
- W2557631903 cites W2002373751 @default.
- W2557631903 cites W2002730907 @default.
- W2557631903 cites W2003401936 @default.
- W2557631903 cites W2016042645 @default.
- W2557631903 cites W2021899845 @default.
- W2557631903 cites W2031868009 @default.
- W2557631903 cites W2055941942 @default.
- W2557631903 cites W2058040573 @default.
- W2557631903 cites W2059514316 @default.
- W2557631903 cites W2066230046 @default.
- W2557631903 cites W2068056483 @default.
- W2557631903 cites W2069866180 @default.
- W2557631903 cites W2070054404 @default.
- W2557631903 cites W2078176175 @default.
- W2557631903 cites W2078519579 @default.
- W2557631903 cites W2082239061 @default.
- W2557631903 cites W2082645486 @default.
- W2557631903 cites W2082676089 @default.
- W2557631903 cites W2091946117 @default.
- W2557631903 cites W2093124572 @default.
- W2557631903 cites W2102424294 @default.
- W2557631903 cites W2104354220 @default.
- W2557631903 cites W2105316344 @default.
- W2557631903 cites W2107179359 @default.
- W2557631903 cites W2109226117 @default.
- W2557631903 cites W2114671330 @default.
- W2557631903 cites W2121562008 @default.
- W2557631903 cites W2121792431 @default.
- W2557631903 cites W2121813979 @default.
- W2557631903 cites W2124118547 @default.
- W2557631903 cites W2128379421 @default.
- W2557631903 cites W2135100706 @default.
- W2557631903 cites W2141079829 @default.
- W2557631903 cites W2141899433 @default.
- W2557631903 cites W2144848202 @default.
- W2557631903 cites W2152311269 @default.
- W2557631903 cites W2161947453 @default.
- W2557631903 cites W2165014477 @default.
- W2557631903 cites W2166919664 @default.
- W2557631903 cites W2167209526 @default.
- W2557631903 cites W2185746506 @default.
- W2557631903 cites W2295543270 @default.
- W2557631903 cites W2321469283 @default.
- W2557631903 cites W2333553918 @default.
- W2557631903 cites W2470579635 @default.
- W2557631903 cites W2513305863 @default.
- W2557631903 cites W4238380085 @default.
- W2557631903 doi "https://doi.org/10.3354/meps11995" @default.
- W2557631903 hasPublicationYear "2017" @default.
- W2557631903 type Work @default.
- W2557631903 sameAs 2557631903 @default.
- W2557631903 citedByCount "12" @default.
- W2557631903 countsByYear W25576319032018 @default.
- W2557631903 countsByYear W25576319032019 @default.
- W2557631903 countsByYear W25576319032020 @default.
- W2557631903 countsByYear W25576319032021 @default.
- W2557631903 countsByYear W25576319032022 @default.
- W2557631903 countsByYear W25576319032023 @default.
- W2557631903 crossrefType "journal-article" @default.
- W2557631903 hasAuthorship W2557631903A5017334107 @default.
- W2557631903 hasAuthorship W2557631903A5031194545 @default.
- W2557631903 hasAuthorship W2557631903A5057327132 @default.
- W2557631903 hasAuthorship W2557631903A5074016954 @default.
- W2557631903 hasAuthorship W2557631903A5086273156 @default.
- W2557631903 hasConcept C102715595 @default.
- W2557631903 hasConcept C109931610 @default.
- W2557631903 hasConcept C110872660 @default.
- W2557631903 hasConcept C129513315 @default.
- W2557631903 hasConcept C185933670 @default.
- W2557631903 hasConcept C18903297 @default.