Matches in SemOpenAlex for { <https://semopenalex.org/work/W2557655760> ?p ?o ?g. }
- W2557655760 endingPage "453" @default.
- W2557655760 startingPage "442" @default.
- W2557655760 abstract "Abstract Coal seam gas (CSG), an unconventional resource of energy, is gaining global interests due to its natural abundance and environmental benefits in comparison to more traditional energy sources. Its production is mainly controlled by the underlying fracture network of coal, called “cleats”. The discrete fracture network (DFN) model is widely applied for characterising fracture networks due to its ability of accounting for physical geological parameters of cleats. However, common discrete fracture network (DFN) models fail to preserve the local heterogeneity by assuming planar and smooth cleat surfaces, while real cleats have rough walls and variable opening apertures. This paper aims to characterise the roughness of cleat surfaces at the core scale by developing a novel framework: rough-walled discrete fracture network (RW-DFN) model. The model integrates the pore-scale roughness obtained from micro-computed tomography (micro-CT) imaging of coals into the discrete representation of fracture networks. Analysis of the fracture surfaces obtained from micro-CT imaging demonstrates random, isotropic surfaces following a Gaussian distribution. RW-DFN gives lower permeability than that of the traditional DFN by up to 30%, and its permeability estimation is more accurate with significantly fewer errors (6.5%) than traditional ones (25.1%). This indicates that, to be able to characterise these reservoirs, traditional DFN models may over-estimate the production while our proposed RW-DFNs provide more deterministic results. Overall, the method applies micro-CT imaging to obtain the internal surfaces of coal fractures in a non-destructive manner and reconstruct representative RW-DFN models. The developed RW-DFN models are not restricted by the imaging resolution, so that they are favourable for direct numerical simulation of permeability. In addition, RW-DFN models can be constructed with extended domain size, so they can be incorporated into existing reservoir characterisation frameworks for the prediction of coal properties." @default.
- W2557655760 created "2016-12-08" @default.
- W2557655760 creator A5005941359 @default.
- W2557655760 creator A5012826639 @default.
- W2557655760 creator A5050047327 @default.
- W2557655760 date "2017-03-01" @default.
- W2557655760 modified "2023-10-01" @default.
- W2557655760 title "Rough-walled discrete fracture network modelling for coal characterisation" @default.
- W2557655760 cites W1587236824 @default.
- W2557655760 cites W1632317815 @default.
- W2557655760 cites W1899009607 @default.
- W2557655760 cites W1964037597 @default.
- W2557655760 cites W1964255610 @default.
- W2557655760 cites W1965154837 @default.
- W2557655760 cites W1971328290 @default.
- W2557655760 cites W1973900511 @default.
- W2557655760 cites W1974819257 @default.
- W2557655760 cites W1975924406 @default.
- W2557655760 cites W1979676491 @default.
- W2557655760 cites W1981136290 @default.
- W2557655760 cites W1984204910 @default.
- W2557655760 cites W1985635555 @default.
- W2557655760 cites W1986184186 @default.
- W2557655760 cites W1988241940 @default.
- W2557655760 cites W1988819494 @default.
- W2557655760 cites W1994402556 @default.
- W2557655760 cites W1995019667 @default.
- W2557655760 cites W2010871206 @default.
- W2557655760 cites W2014271907 @default.
- W2557655760 cites W2018248030 @default.
- W2557655760 cites W2022877367 @default.
- W2557655760 cites W2026877505 @default.
- W2557655760 cites W2033572266 @default.
- W2557655760 cites W2038827290 @default.
- W2557655760 cites W2041171254 @default.
- W2557655760 cites W2043408739 @default.
- W2557655760 cites W2044109599 @default.
- W2557655760 cites W2046625000 @default.
- W2557655760 cites W2048615184 @default.
- W2557655760 cites W2054629690 @default.
- W2557655760 cites W2058773743 @default.
- W2557655760 cites W2060816662 @default.
- W2557655760 cites W2061785393 @default.
- W2557655760 cites W2061998690 @default.
- W2557655760 cites W2062411565 @default.
- W2557655760 cites W2062706509 @default.
- W2557655760 cites W2067224114 @default.
- W2557655760 cites W2067379519 @default.
- W2557655760 cites W2073828018 @default.
- W2557655760 cites W2075089440 @default.
- W2557655760 cites W2079218153 @default.
- W2557655760 cites W2079602239 @default.
- W2557655760 cites W2080663891 @default.
- W2557655760 cites W2083312390 @default.
- W2557655760 cites W2085728084 @default.
- W2557655760 cites W2091867118 @default.
- W2557655760 cites W2091991433 @default.
- W2557655760 cites W2105790685 @default.
- W2557655760 cites W2115459779 @default.
- W2557655760 cites W2144809323 @default.
- W2557655760 cites W2151673909 @default.
- W2557655760 cites W2157494358 @default.
- W2557655760 cites W2158549841 @default.
- W2557655760 cites W2173296142 @default.
- W2557655760 cites W2191912855 @default.
- W2557655760 cites W2195574927 @default.
- W2557655760 cites W2344909116 @default.
- W2557655760 cites W2346788055 @default.
- W2557655760 cites W4239264034 @default.
- W2557655760 cites W4298290504 @default.
- W2557655760 doi "https://doi.org/10.1016/j.fuel.2016.11.094" @default.
- W2557655760 hasPublicationYear "2017" @default.
- W2557655760 type Work @default.
- W2557655760 sameAs 2557655760 @default.
- W2557655760 citedByCount "83" @default.
- W2557655760 countsByYear W25576557602017 @default.
- W2557655760 countsByYear W25576557602018 @default.
- W2557655760 countsByYear W25576557602019 @default.
- W2557655760 countsByYear W25576557602020 @default.
- W2557655760 countsByYear W25576557602021 @default.
- W2557655760 countsByYear W25576557602022 @default.
- W2557655760 countsByYear W25576557602023 @default.
- W2557655760 crossrefType "journal-article" @default.
- W2557655760 hasAuthorship W2557655760A5005941359 @default.
- W2557655760 hasAuthorship W2557655760A5012826639 @default.
- W2557655760 hasAuthorship W2557655760A5050047327 @default.
- W2557655760 hasConcept C127313418 @default.
- W2557655760 hasConcept C127413603 @default.
- W2557655760 hasConcept C159985019 @default.
- W2557655760 hasConcept C186060115 @default.
- W2557655760 hasConcept C192562407 @default.
- W2557655760 hasConcept C41008148 @default.
- W2557655760 hasConcept C43369102 @default.
- W2557655760 hasConcept C518851703 @default.
- W2557655760 hasConcept C548081761 @default.
- W2557655760 hasConcept C78762247 @default.
- W2557655760 hasConcept C86803240 @default.
- W2557655760 hasConceptScore W2557655760C127313418 @default.