Matches in SemOpenAlex for { <https://semopenalex.org/work/W2557716848> ?p ?o ?g. }
- W2557716848 endingPage "010702" @default.
- W2557716848 startingPage "010702" @default.
- W2557716848 abstract "The third-generation synchrotron radiation sources are widely used in physics, chemistry, material science, etc. due to their light beams with high brilliance and low emittance. In order to efficiently utilize such light beams for scientific research, reflective mirrors with excellent figure quality are required. The reflective mirrors on the beamlines of synchrotron radiation sources consist of fixed polished shape mirrors and bendable mirrors. Bendable mirrors have been attracting the attention of the synchrotron radiation community because their curvatures can be varied to realize different focusing properties. Classical bendable mirrors are realized by applying mechanical moment at the ends of the mirror substrates. In this paper, we introduce a new concept of bendable mirrors, X-ray adaptive mirrors which are based on the adaptive optics technology and the properties of piezoelectric bimorph systems. X-ray adaptive mirrors exhibit many advantages over the classical bendable mirrors, such as mechanics-free, figure local corrections, and good focusing properties. The piezoelectric bimorph mirrors have been used in astronomy to correct the wavefront distortions introduced by atmospheric turbulence in real time. The piezoelectric bimorph mirror was first introduced into the field of synchrotron radiation by European Synchrotron Radiation Facility (ESRF) in the 1990s for making an X-ray reflective mirror. Compared with astronomy community, synchrotron radiation community is not interested in high-speed wavefront correction, but looking for the ultimate precision of the surface shape of piezoelectric bimorph mirror. In the second part of this paper, the usual structure and working principle are briefly described. Piezoelectric bimorph mirrors are laminated structures consisting of two strips of an active material such as zirconate lead titanate (PZT) and two faceplates of a reflecting material such as silicon. A discrete or continuous control electrode is located between the interfaces of PZT-PZT, while two continuous ground electrodes are located between the interfaces of Si-PZT. The PZTs that are polarized normally to their surface, any voltage applied across the bimorph results in a different change of the lateral dimensions of two PZTs, thereby leading to a bending of the whole structure. The relationship between the curvature of the bending mirror and voltage is given. In the third part of this paper, the technical issues as well as the design concepts are discussed in detail. Several Si-PZT-PZT-Si bimorph mirrors are first fabricated and tested by ESRF. The dimensions of each of them are 150 mm in length, 4045 mm in width, and 1518 mm in thickness. PZT is selected as an active material because of its high coupling factor, high piezoelectric coefficient, and high Curie temperature. The faceplates need to be easy to polish such as silicon and silica. Owing to the symmetrical layered structure Si-PZT-PZT-Si, the mirror is less sensitive to temperature variations from the process of bonding and polishing. The bimorph mirrors are confirmed to be promising by experimental tests. As the state-of-art polishing technique, elastic emission machining (EEM) becomes available commercially, and diamond light source brings EEM into the bimorph mirror to achieve a novel adaptive X-ray mirror coupling adaptive zonal control with a super-smooth surface. This super-polished adaptive mirror becomes the first optics with a bendable ellipse with sub-nanometer figure error. Spring-8 fabricates an adaptive mirror with different structures, and two strips of PZTs are glued to the side faces of the mirror. This mirror shows a diffraction-limited performance. Finally, the wavefront measuring methods and control algorithm are introduced. Wavefront measuring devices used in the metrology cleanroom include long trace profiler, nanometer optics component measuring machine, and interferometer. At-wavelength measuring methods used on the beamline include pencil-beam method, phase retrieval method, X-ray speckle tracking technique, and Hartmann test. The wavefront control algorithm is aimed at obtaining the voltages applied according to the inverse of the interaction matrix." @default.
- W2557716848 created "2016-12-08" @default.
- W2557716848 creator A5001117197 @default.
- W2557716848 creator A5017584392 @default.
- W2557716848 creator A5060562711 @default.
- W2557716848 creator A5061681946 @default.
- W2557716848 creator A5061802647 @default.
- W2557716848 creator A5062709818 @default.
- W2557716848 creator A5063675780 @default.
- W2557716848 creator A5068983817 @default.
- W2557716848 creator A5073401413 @default.
- W2557716848 date "2016-01-01" @default.
- W2557716848 modified "2023-09-26" @default.
- W2557716848 title "Present research status of piezoelectric bimorph mirrors in synchrotron radiation sources" @default.
- W2557716848 cites W1963793169 @default.
- W2557716848 cites W1971287781 @default.
- W2557716848 cites W1973713605 @default.
- W2557716848 cites W1976305725 @default.
- W2557716848 cites W1978860747 @default.
- W2557716848 cites W1981144161 @default.
- W2557716848 cites W1987680895 @default.
- W2557716848 cites W1988145119 @default.
- W2557716848 cites W1989939239 @default.
- W2557716848 cites W1991184970 @default.
- W2557716848 cites W1994233057 @default.
- W2557716848 cites W1996422509 @default.
- W2557716848 cites W1998816815 @default.
- W2557716848 cites W2001643837 @default.
- W2557716848 cites W2001647650 @default.
- W2557716848 cites W2007448212 @default.
- W2557716848 cites W2010584271 @default.
- W2557716848 cites W2015881775 @default.
- W2557716848 cites W2016736947 @default.
- W2557716848 cites W2037381699 @default.
- W2557716848 cites W2044322086 @default.
- W2557716848 cites W2045347640 @default.
- W2557716848 cites W2047534083 @default.
- W2557716848 cites W2050608019 @default.
- W2557716848 cites W2058874829 @default.
- W2557716848 cites W2065603234 @default.
- W2557716848 cites W2066520956 @default.
- W2557716848 cites W2074210711 @default.
- W2557716848 cites W2078799090 @default.
- W2557716848 cites W2079345519 @default.
- W2557716848 cites W2204994141 @default.
- W2557716848 cites W2221364972 @default.
- W2557716848 cites W2236477680 @default.
- W2557716848 cites W2268429846 @default.
- W2557716848 cites W2275236507 @default.
- W2557716848 cites W2275949803 @default.
- W2557716848 cites W2323456820 @default.
- W2557716848 cites W2325021247 @default.
- W2557716848 cites W2335181814 @default.
- W2557716848 cites W2463057039 @default.
- W2557716848 cites W2784259951 @default.
- W2557716848 cites W2993182205 @default.
- W2557716848 cites W4248400135 @default.
- W2557716848 cites W854637394 @default.
- W2557716848 cites W2038541587 @default.
- W2557716848 cites W2055617581 @default.
- W2557716848 doi "https://doi.org/10.7498/aps.65.010702" @default.
- W2557716848 hasPublicationYear "2016" @default.
- W2557716848 type Work @default.
- W2557716848 sameAs 2557716848 @default.
- W2557716848 citedByCount "0" @default.
- W2557716848 crossrefType "journal-article" @default.
- W2557716848 hasAuthorship W2557716848A5001117197 @default.
- W2557716848 hasAuthorship W2557716848A5017584392 @default.
- W2557716848 hasAuthorship W2557716848A5060562711 @default.
- W2557716848 hasAuthorship W2557716848A5061681946 @default.
- W2557716848 hasAuthorship W2557716848A5061802647 @default.
- W2557716848 hasAuthorship W2557716848A5062709818 @default.
- W2557716848 hasAuthorship W2557716848A5063675780 @default.
- W2557716848 hasAuthorship W2557716848A5068983817 @default.
- W2557716848 hasAuthorship W2557716848A5073401413 @default.
- W2557716848 hasBestOaLocation W25577168481 @default.
- W2557716848 hasConcept C100082104 @default.
- W2557716848 hasConcept C120665830 @default.
- W2557716848 hasConcept C121332964 @default.
- W2557716848 hasConcept C136872047 @default.
- W2557716848 hasConcept C16332341 @default.
- W2557716848 hasConcept C165699331 @default.
- W2557716848 hasConcept C21368211 @default.
- W2557716848 hasConcept C24890656 @default.
- W2557716848 hasConcept C2778393539 @default.
- W2557716848 hasConcept C2779328170 @default.
- W2557716848 hasConcept C35655370 @default.
- W2557716848 hasConceptScore W2557716848C100082104 @default.
- W2557716848 hasConceptScore W2557716848C120665830 @default.
- W2557716848 hasConceptScore W2557716848C121332964 @default.
- W2557716848 hasConceptScore W2557716848C136872047 @default.
- W2557716848 hasConceptScore W2557716848C16332341 @default.
- W2557716848 hasConceptScore W2557716848C165699331 @default.
- W2557716848 hasConceptScore W2557716848C21368211 @default.
- W2557716848 hasConceptScore W2557716848C24890656 @default.
- W2557716848 hasConceptScore W2557716848C2778393539 @default.
- W2557716848 hasConceptScore W2557716848C2779328170 @default.
- W2557716848 hasConceptScore W2557716848C35655370 @default.