Matches in SemOpenAlex for { <https://semopenalex.org/work/W2557810471> ?p ?o ?g. }
- W2557810471 endingPage "e393" @default.
- W2557810471 startingPage "e393" @default.
- W2557810471 abstract "Clustered interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome engineering technologies are sparking a new revolution in biological research. This technology efficiently induces DNA double strand breaks at the targeted genomic sequence and results in indel mutations by the error-prone process of nonhomologous end joining DNA repair or homologous recombination with a DNA repair template. The efficiency of genome editing with CRISPR/Cas9 alone in human embryonic stem cells is still low. Gene targeting with adeno-associated virus (AAV) vectors has been demonstrated in multiple human cell types with maximal targeting frequencies without engineered nucleases. However, whether CRISPR/Cas9-mediated double strand breaks and AAV based donor DNA mediated homologous recombination approaches could be combined to create a novel CRISPR/Cas9-AAV genetic tool for highly specific gene editing is not clear. Here we demonstrate that using CRISPR/Cas9-AAV, we could successfully knock-in a DsRed reporter gene at the basic motifleucine zipper transcription factor (NRL) locus in human embryonic stem cells. For the first time, this study provides the proof of principle that these two technologies can be used together. CRISPR/Cas9-AAV, a new genome editing tool, offers a platform for the manipulation of human genome. Clustered interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome engineering technologies are sparking a new revolution in biological research. This technology efficiently induces DNA double strand breaks at the targeted genomic sequence and results in indel mutations by the error-prone process of nonhomologous end joining DNA repair or homologous recombination with a DNA repair template. The efficiency of genome editing with CRISPR/Cas9 alone in human embryonic stem cells is still low. Gene targeting with adeno-associated virus (AAV) vectors has been demonstrated in multiple human cell types with maximal targeting frequencies without engineered nucleases. However, whether CRISPR/Cas9-mediated double strand breaks and AAV based donor DNA mediated homologous recombination approaches could be combined to create a novel CRISPR/Cas9-AAV genetic tool for highly specific gene editing is not clear. Here we demonstrate that using CRISPR/Cas9-AAV, we could successfully knock-in a DsRed reporter gene at the basic motifleucine zipper transcription factor (NRL) locus in human embryonic stem cells. For the first time, this study provides the proof of principle that these two technologies can be used together. CRISPR/Cas9-AAV, a new genome editing tool, offers a platform for the manipulation of human genome." @default.
- W2557810471 created "2016-12-08" @default.
- W2557810471 creator A5007013151 @default.
- W2557810471 creator A5007514943 @default.
- W2557810471 creator A5019571170 @default.
- W2557810471 creator A5028934072 @default.
- W2557810471 creator A5031495364 @default.
- W2557810471 creator A5032756158 @default.
- W2557810471 creator A5045990965 @default.
- W2557810471 creator A5062451757 @default.
- W2557810471 creator A5080097097 @default.
- W2557810471 creator A5085090240 @default.
- W2557810471 creator A5087983431 @default.
- W2557810471 date "2016-01-01" @default.
- W2557810471 modified "2023-09-30" @default.
- W2557810471 title "CRISPR/Cas9-AAV Mediated Knock-in at NRL Locus in Human Embryonic Stem Cells" @default.
- W2557810471 cites W1496067884 @default.
- W2557810471 cites W1525882285 @default.
- W2557810471 cites W1955514206 @default.
- W2557810471 cites W1970140546 @default.
- W2557810471 cites W1972305852 @default.
- W2557810471 cites W1974113099 @default.
- W2557810471 cites W1980913087 @default.
- W2557810471 cites W1982969769 @default.
- W2557810471 cites W1984064827 @default.
- W2557810471 cites W1993439119 @default.
- W2557810471 cites W1996788258 @default.
- W2557810471 cites W2001497035 @default.
- W2557810471 cites W2003171404 @default.
- W2557810471 cites W2024123713 @default.
- W2557810471 cites W2028030005 @default.
- W2557810471 cites W2031693575 @default.
- W2557810471 cites W2036176224 @default.
- W2557810471 cites W2038404321 @default.
- W2557810471 cites W2039705224 @default.
- W2557810471 cites W2040434386 @default.
- W2557810471 cites W2047213214 @default.
- W2557810471 cites W2049948975 @default.
- W2557810471 cites W2050480410 @default.
- W2557810471 cites W2061184966 @default.
- W2557810471 cites W2065532119 @default.
- W2557810471 cites W2070628315 @default.
- W2557810471 cites W2082557627 @default.
- W2557810471 cites W2090650873 @default.
- W2557810471 cites W2094979867 @default.
- W2557810471 cites W2096261947 @default.
- W2557810471 cites W2100122648 @default.
- W2557810471 cites W2109583860 @default.
- W2557810471 cites W2110301828 @default.
- W2557810471 cites W2112624632 @default.
- W2557810471 cites W2114773348 @default.
- W2557810471 cites W2126432370 @default.
- W2557810471 cites W2145694460 @default.
- W2557810471 cites W2153411657 @default.
- W2557810471 cites W2153478200 @default.
- W2557810471 cites W2154395280 @default.
- W2557810471 cites W2155666770 @default.
- W2557810471 cites W2167380395 @default.
- W2557810471 cites W2167575455 @default.
- W2557810471 cites W2188223075 @default.
- W2557810471 cites W2197714088 @default.
- W2557810471 cites W2224398381 @default.
- W2557810471 cites W4206892629 @default.
- W2557810471 cites W4292230674 @default.
- W2557810471 doi "https://doi.org/10.1038/mtna.2016.100" @default.
- W2557810471 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5155318" @default.
- W2557810471 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28131251" @default.
- W2557810471 hasPublicationYear "2016" @default.
- W2557810471 type Work @default.
- W2557810471 sameAs 2557810471 @default.
- W2557810471 citedByCount "9" @default.
- W2557810471 countsByYear W25578104712017 @default.
- W2557810471 countsByYear W25578104712018 @default.
- W2557810471 countsByYear W25578104712019 @default.
- W2557810471 countsByYear W25578104712020 @default.
- W2557810471 countsByYear W25578104712021 @default.
- W2557810471 countsByYear W25578104712022 @default.
- W2557810471 crossrefType "journal-article" @default.
- W2557810471 hasAuthorship W2557810471A5007013151 @default.
- W2557810471 hasAuthorship W2557810471A5007514943 @default.
- W2557810471 hasAuthorship W2557810471A5019571170 @default.
- W2557810471 hasAuthorship W2557810471A5028934072 @default.
- W2557810471 hasAuthorship W2557810471A5031495364 @default.
- W2557810471 hasAuthorship W2557810471A5032756158 @default.
- W2557810471 hasAuthorship W2557810471A5045990965 @default.
- W2557810471 hasAuthorship W2557810471A5062451757 @default.
- W2557810471 hasAuthorship W2557810471A5080097097 @default.
- W2557810471 hasAuthorship W2557810471A5085090240 @default.
- W2557810471 hasAuthorship W2557810471A5087983431 @default.
- W2557810471 hasBestOaLocation W25578104711 @default.
- W2557810471 hasConcept C102744134 @default.
- W2557810471 hasConcept C104317684 @default.
- W2557810471 hasConcept C104451858 @default.
- W2557810471 hasConcept C111829913 @default.
- W2557810471 hasConcept C132455925 @default.
- W2557810471 hasConcept C134935766 @default.
- W2557810471 hasConcept C141231307 @default.
- W2557810471 hasConcept C144501496 @default.