Matches in SemOpenAlex for { <https://semopenalex.org/work/W2557852221> ?p ?o ?g. }
- W2557852221 abstract "This thesis focuses on some mathematical aspects and a few recent applications ofthe polarization tensor (PT). Here, the main concern of the study is to characterizeobjects presented in electrical or electromagnetic fields by only using the PT. This ispossible since the PT contains significant information about the object such as shape,orientation and material properties. Two main applications are considered in the studyand they are electrosensing fish and metal detection. In each application, we present amathematical formulation of the PT and briefly discuss its properties.The PT in the electrosensing fish is actually based on the first order generalizedpolarization tensor (GPT) while the GPT itself generalizes the classical PT called asthe P I�olya-Szeg I�o PT. In order to investigate the role of the PT in electrosensing fish,we propose two numerical methods to compute the first order PT. The first method isdirectly based on the quadrature method of numerical integration while the secondmethod is an adaptation of some terminologies of the boundary element method (BEM).A code to use the first method is developed in Matlab while a script in Python iswritten as an interface for using the new developed code for BEM called as BEM++.When comparing the two methods, our numerical results show that the first order PT ismore accurate with faster convergence when computed by BEM++. During this study,we also give a strategy to determine an ellipsoid from a given first order PT. This isbecause we would like to propose an experiment to test whether electrosensing fish candiscriminate a pair of different objects but with the same first order PT such that thepair could be an ellipsoid and some other object. In addition, the first order PT (orthe P I�olya-Szeg I�o PT) with complex conductivity (or complex permittivity) which issimilar to the PT for Maxwell�s equations is also investigated.On the other hand, following recent mathematical foundation of the PT from theeddy current model, we use the new proposed explicit formula to compute the rank2 PT for a few metallic targets relevance in metal detection. We show that the PTfor the targets computed from the explicit formula agree to some degree of accuracywith the PT obtained from metal detectors during experimental works and simulationsconducted by the engineers. This suggests to alternatively use the explicit formulawhich depends only on the geometry and material properties of the target as well asoffering lower computational efforts than performing measurements with metal detectorsto obtain the PT. By using the explicit formula of the rank 2 PT, we also numericallyinvestigate some properties of the rank 2 PT where, the information obtained could beuseful to improve metal detection and also in other potential applications of the eddycurrent. In this case, if the target is magnetic but non-conducting, the rank 2 PT ofthe target can also be computed by using the explicit formula of the first order PT." @default.
- W2557852221 created "2016-12-08" @default.
- W2557852221 creator A5033922514 @default.
- W2557852221 creator A5057666571 @default.
- W2557852221 date "2016-11-16" @default.
- W2557852221 modified "2023-09-24" @default.
- W2557852221 title "Characterization of objects by fitting the polarization tensor" @default.
- W2557852221 cites W1527034061 @default.
- W2557852221 cites W1550621289 @default.
- W2557852221 cites W1551242695 @default.
- W2557852221 cites W1585398001 @default.
- W2557852221 cites W1591633447 @default.
- W2557852221 cites W1593810262 @default.
- W2557852221 cites W1641896143 @default.
- W2557852221 cites W1741578612 @default.
- W2557852221 cites W1971959006 @default.
- W2557852221 cites W1974124603 @default.
- W2557852221 cites W1975648481 @default.
- W2557852221 cites W1983960015 @default.
- W2557852221 cites W1989790153 @default.
- W2557852221 cites W2005681075 @default.
- W2557852221 cites W2020077517 @default.
- W2557852221 cites W2024506048 @default.
- W2557852221 cites W2048836754 @default.
- W2557852221 cites W2053510218 @default.
- W2557852221 cites W2077127884 @default.
- W2557852221 cites W2086941047 @default.
- W2557852221 cites W2110521805 @default.
- W2557852221 cites W2123252306 @default.
- W2557852221 cites W2163381613 @default.
- W2557852221 cites W2167443288 @default.
- W2557852221 cites W2496081756 @default.
- W2557852221 cites W2503727446 @default.
- W2557852221 cites W3102469110 @default.
- W2557852221 cites W386941769 @default.
- W2557852221 cites W573361239 @default.
- W2557852221 cites W647923154 @default.
- W2557852221 cites W651663910 @default.
- W2557852221 cites W1548704609 @default.
- W2557852221 hasPublicationYear "2016" @default.
- W2557852221 type Work @default.
- W2557852221 sameAs 2557852221 @default.
- W2557852221 citedByCount "0" @default.
- W2557852221 crossrefType "dissertation" @default.
- W2557852221 hasAuthorship W2557852221A5033922514 @default.
- W2557852221 hasAuthorship W2557852221A5057666571 @default.
- W2557852221 hasConcept C121332964 @default.
- W2557852221 hasConcept C1276947 @default.
- W2557852221 hasConcept C134306372 @default.
- W2557852221 hasConcept C135628077 @default.
- W2557852221 hasConcept C199360897 @default.
- W2557852221 hasConcept C2780365114 @default.
- W2557852221 hasConcept C28826006 @default.
- W2557852221 hasConcept C33923547 @default.
- W2557852221 hasConcept C41008148 @default.
- W2557852221 hasConcept C459310 @default.
- W2557852221 hasConcept C48753275 @default.
- W2557852221 hasConcept C519991488 @default.
- W2557852221 hasConcept C57489055 @default.
- W2557852221 hasConcept C63632240 @default.
- W2557852221 hasConcept C97355855 @default.
- W2557852221 hasConceptScore W2557852221C121332964 @default.
- W2557852221 hasConceptScore W2557852221C1276947 @default.
- W2557852221 hasConceptScore W2557852221C134306372 @default.
- W2557852221 hasConceptScore W2557852221C135628077 @default.
- W2557852221 hasConceptScore W2557852221C199360897 @default.
- W2557852221 hasConceptScore W2557852221C2780365114 @default.
- W2557852221 hasConceptScore W2557852221C28826006 @default.
- W2557852221 hasConceptScore W2557852221C33923547 @default.
- W2557852221 hasConceptScore W2557852221C41008148 @default.
- W2557852221 hasConceptScore W2557852221C459310 @default.
- W2557852221 hasConceptScore W2557852221C48753275 @default.
- W2557852221 hasConceptScore W2557852221C519991488 @default.
- W2557852221 hasConceptScore W2557852221C57489055 @default.
- W2557852221 hasConceptScore W2557852221C63632240 @default.
- W2557852221 hasConceptScore W2557852221C97355855 @default.
- W2557852221 hasLocation W25578522211 @default.
- W2557852221 hasOpenAccess W2557852221 @default.
- W2557852221 hasPrimaryLocation W25578522211 @default.
- W2557852221 hasRelatedWork W1986466054 @default.
- W2557852221 hasRelatedWork W2065964984 @default.
- W2557852221 hasRelatedWork W2222892122 @default.
- W2557852221 hasRelatedWork W2324913148 @default.
- W2557852221 hasRelatedWork W2411349884 @default.
- W2557852221 hasRelatedWork W2531432880 @default.
- W2557852221 hasRelatedWork W2795978325 @default.
- W2557852221 hasRelatedWork W2910873294 @default.
- W2557852221 hasRelatedWork W2922324460 @default.
- W2557852221 hasRelatedWork W2949493764 @default.
- W2557852221 hasRelatedWork W2949989322 @default.
- W2557852221 hasRelatedWork W3003894950 @default.
- W2557852221 hasRelatedWork W3013595439 @default.
- W2557852221 hasRelatedWork W3014252153 @default.
- W2557852221 hasRelatedWork W3033479233 @default.
- W2557852221 hasRelatedWork W3053383825 @default.
- W2557852221 hasRelatedWork W3098410513 @default.
- W2557852221 hasRelatedWork W3099579843 @default.
- W2557852221 hasRelatedWork W3201212091 @default.
- W2557852221 isParatext "false" @default.
- W2557852221 isRetracted "false" @default.