Matches in SemOpenAlex for { <https://semopenalex.org/work/W2557889580> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2557889580 abstract "Most contemporary approaches to instance segmentation use complex pipelines involving conditional random fields, recurrent neural networks, object proposals, or template matching schemes. In this paper, we present a simple yet powerful end-to-end convolutional neural network to tackle this task. Our approach combines intuitions from the classical watershed transform and modern deep learning to produce an energy map of the image where object instances are unambiguously represented as energy basins. We then perform a cut at a single energy level to directly yield connected components corresponding to object instances. Our model achieves more than double the performance over the state-of-the-art on the challenging Cityscapes Instance Level Segmentation task." @default.
- W2557889580 created "2016-12-08" @default.
- W2557889580 creator A5018916500 @default.
- W2557889580 creator A5058557954 @default.
- W2557889580 date "2017-07-01" @default.
- W2557889580 modified "2023-10-16" @default.
- W2557889580 title "Deep Watershed Transform for Instance Segmentation" @default.
- W2557889580 cites W130423592 @default.
- W2557889580 cites W1903029394 @default.
- W2557889580 cites W1991367009 @default.
- W2557889580 cites W2121927366 @default.
- W2557889580 cites W2131006320 @default.
- W2557889580 cites W2216125271 @default.
- W2557889580 cites W2272561391 @default.
- W2557889580 cites W2340897893 @default.
- W2557889580 cites W2341555367 @default.
- W2557889580 cites W260801291 @default.
- W2557889580 cites W2963971305 @default.
- W2557889580 cites W2964001331 @default.
- W2557889580 doi "https://doi.org/10.1109/cvpr.2017.305" @default.
- W2557889580 hasPublicationYear "2017" @default.
- W2557889580 type Work @default.
- W2557889580 sameAs 2557889580 @default.
- W2557889580 citedByCount "412" @default.
- W2557889580 countsByYear W25578895802017 @default.
- W2557889580 countsByYear W25578895802018 @default.
- W2557889580 countsByYear W25578895802019 @default.
- W2557889580 countsByYear W25578895802020 @default.
- W2557889580 countsByYear W25578895802021 @default.
- W2557889580 countsByYear W25578895802022 @default.
- W2557889580 countsByYear W25578895802023 @default.
- W2557889580 crossrefType "proceedings-article" @default.
- W2557889580 hasAuthorship W2557889580A5018916500 @default.
- W2557889580 hasAuthorship W2557889580A5058557954 @default.
- W2557889580 hasBestOaLocation W25578895802 @default.
- W2557889580 hasConcept C105795698 @default.
- W2557889580 hasConcept C108583219 @default.
- W2557889580 hasConcept C124504099 @default.
- W2557889580 hasConcept C127413603 @default.
- W2557889580 hasConcept C150547873 @default.
- W2557889580 hasConcept C152565575 @default.
- W2557889580 hasConcept C153180895 @default.
- W2557889580 hasConcept C154945302 @default.
- W2557889580 hasConcept C165064840 @default.
- W2557889580 hasConcept C201995342 @default.
- W2557889580 hasConcept C2780451532 @default.
- W2557889580 hasConcept C2781238097 @default.
- W2557889580 hasConcept C31972630 @default.
- W2557889580 hasConcept C33923547 @default.
- W2557889580 hasConcept C41008148 @default.
- W2557889580 hasConcept C81363708 @default.
- W2557889580 hasConcept C89600930 @default.
- W2557889580 hasConceptScore W2557889580C105795698 @default.
- W2557889580 hasConceptScore W2557889580C108583219 @default.
- W2557889580 hasConceptScore W2557889580C124504099 @default.
- W2557889580 hasConceptScore W2557889580C127413603 @default.
- W2557889580 hasConceptScore W2557889580C150547873 @default.
- W2557889580 hasConceptScore W2557889580C152565575 @default.
- W2557889580 hasConceptScore W2557889580C153180895 @default.
- W2557889580 hasConceptScore W2557889580C154945302 @default.
- W2557889580 hasConceptScore W2557889580C165064840 @default.
- W2557889580 hasConceptScore W2557889580C201995342 @default.
- W2557889580 hasConceptScore W2557889580C2780451532 @default.
- W2557889580 hasConceptScore W2557889580C2781238097 @default.
- W2557889580 hasConceptScore W2557889580C31972630 @default.
- W2557889580 hasConceptScore W2557889580C33923547 @default.
- W2557889580 hasConceptScore W2557889580C41008148 @default.
- W2557889580 hasConceptScore W2557889580C81363708 @default.
- W2557889580 hasConceptScore W2557889580C89600930 @default.
- W2557889580 hasLocation W25578895801 @default.
- W2557889580 hasLocation W25578895802 @default.
- W2557889580 hasOpenAccess W2557889580 @default.
- W2557889580 hasPrimaryLocation W25578895801 @default.
- W2557889580 hasRelatedWork W2093471820 @default.
- W2557889580 hasRelatedWork W2114846443 @default.
- W2557889580 hasRelatedWork W2356597680 @default.
- W2557889580 hasRelatedWork W3029198973 @default.
- W2557889580 hasRelatedWork W3102147106 @default.
- W2557889580 hasRelatedWork W3133861977 @default.
- W2557889580 hasRelatedWork W3167935049 @default.
- W2557889580 hasRelatedWork W3193565141 @default.
- W2557889580 hasRelatedWork W4226493464 @default.
- W2557889580 hasRelatedWork W4312417841 @default.
- W2557889580 isParatext "false" @default.
- W2557889580 isRetracted "false" @default.
- W2557889580 magId "2557889580" @default.
- W2557889580 workType "article" @default.