Matches in SemOpenAlex for { <https://semopenalex.org/work/W2558094457> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2558094457 endingPage "1553" @default.
- W2558094457 startingPage "1541" @default.
- W2558094457 abstract "Scuffing is one of the most problematic failure mechanisms in lubricated mechanical components. It is a sudden and almost not predictable failure that often leads to extensive cost in terms of damages and/or delay in production lines. This study presents a promising solution that can prevent scuffing for the machinery industry in the future. To achieve this goal, a signal processing approach by means of an acoustic emission is introduced for the prediction of scuffing. An acoustic dataset was collected from metallic surfaces reciprocating under a constant load (typical conditions for semi journal bearings). The coefficient of friction values were measured during the entire experiments and were referred to as the ground truth of the momentary surface state. Based on the friction behavior, three friction regimes were defined that are running-in, steady-state, and scuffing. The present approach is based on tracking the changes in acoustic emission by means of three sets of wavelet-derived features. Those features include: 1) energy, 2) entropy, and 3) statistical information about the content of acoustic emission and the response of each feature to the different friction regimes was individually investigated. The applicability of machine learning classification and regression was studied for scuffing prediction. Both approaches were applied separately but can be unified together to increase the prediction time interval of surface failure. For classification, an extra friction regime was introduced designating as pre-scuffing and is defined as a time span of 3 min before the real surface failure. Random forest classifier was used to differentiate the features from the different friction regime. The best performance in classification of features from pre-scuffing regime reached a confidence level as high as 84%. In regression approach, the extracted features sequences were used together with random forest regressor. Our strategy allowed predicting scuffing up to 5 min preceding its real occurrence." @default.
- W2558094457 created "2016-12-08" @default.
- W2558094457 creator A5001463074 @default.
- W2558094457 creator A5044837930 @default.
- W2558094457 creator A5079637651 @default.
- W2558094457 creator A5081321181 @default.
- W2558094457 date "2017-08-01" @default.
- W2558094457 modified "2023-09-28" @default.
- W2558094457 title "Prediction of Failure in Lubricated Surfaces Using Acoustic Time–Frequency Features and Random Forest Algorithm" @default.
- W2558094457 cites W1449300207 @default.
- W2558094457 cites W1965555277 @default.
- W2558094457 cites W1981398087 @default.
- W2558094457 cites W1986468990 @default.
- W2558094457 cites W1991460008 @default.
- W2558094457 cites W1995875735 @default.
- W2558094457 cites W2007533623 @default.
- W2558094457 cites W2015157307 @default.
- W2558094457 cites W2028428047 @default.
- W2558094457 cites W2044784562 @default.
- W2558094457 cites W2053407662 @default.
- W2558094457 cites W2060304859 @default.
- W2558094457 cites W2061087382 @default.
- W2558094457 cites W2063967047 @default.
- W2558094457 cites W2067493606 @default.
- W2558094457 cites W2071029628 @default.
- W2558094457 cites W2083378218 @default.
- W2558094457 cites W2092164935 @default.
- W2558094457 cites W2092721384 @default.
- W2558094457 cites W2118533364 @default.
- W2558094457 cites W2130587362 @default.
- W2558094457 cites W2133952504 @default.
- W2558094457 cites W2153635508 @default.
- W2558094457 cites W2155138959 @default.
- W2558094457 cites W2188028063 @default.
- W2558094457 cites W2911964244 @default.
- W2558094457 cites W3101426737 @default.
- W2558094457 cites W4255272544 @default.
- W2558094457 doi "https://doi.org/10.1109/tii.2016.2635082" @default.
- W2558094457 hasPublicationYear "2017" @default.
- W2558094457 type Work @default.
- W2558094457 sameAs 2558094457 @default.
- W2558094457 citedByCount "50" @default.
- W2558094457 countsByYear W25580944572017 @default.
- W2558094457 countsByYear W25580944572018 @default.
- W2558094457 countsByYear W25580944572019 @default.
- W2558094457 countsByYear W25580944572020 @default.
- W2558094457 countsByYear W25580944572021 @default.
- W2558094457 countsByYear W25580944572022 @default.
- W2558094457 countsByYear W25580944572023 @default.
- W2558094457 crossrefType "journal-article" @default.
- W2558094457 hasAuthorship W2558094457A5001463074 @default.
- W2558094457 hasAuthorship W2558094457A5044837930 @default.
- W2558094457 hasAuthorship W2558094457A5079637651 @default.
- W2558094457 hasAuthorship W2558094457A5081321181 @default.
- W2558094457 hasConcept C106301342 @default.
- W2558094457 hasConcept C11413529 @default.
- W2558094457 hasConcept C121332964 @default.
- W2558094457 hasConcept C154945302 @default.
- W2558094457 hasConcept C169258074 @default.
- W2558094457 hasConcept C174598085 @default.
- W2558094457 hasConcept C24890656 @default.
- W2558094457 hasConcept C41008148 @default.
- W2558094457 hasConcept C62520636 @default.
- W2558094457 hasConceptScore W2558094457C106301342 @default.
- W2558094457 hasConceptScore W2558094457C11413529 @default.
- W2558094457 hasConceptScore W2558094457C121332964 @default.
- W2558094457 hasConceptScore W2558094457C154945302 @default.
- W2558094457 hasConceptScore W2558094457C169258074 @default.
- W2558094457 hasConceptScore W2558094457C174598085 @default.
- W2558094457 hasConceptScore W2558094457C24890656 @default.
- W2558094457 hasConceptScore W2558094457C41008148 @default.
- W2558094457 hasConceptScore W2558094457C62520636 @default.
- W2558094457 hasIssue "4" @default.
- W2558094457 hasLocation W25580944571 @default.
- W2558094457 hasOpenAccess W2558094457 @default.
- W2558094457 hasPrimaryLocation W25580944571 @default.
- W2558094457 hasRelatedWork W2240965754 @default.
- W2558094457 hasRelatedWork W2386767533 @default.
- W2558094457 hasRelatedWork W2964383635 @default.
- W2558094457 hasRelatedWork W3208985699 @default.
- W2558094457 hasRelatedWork W4280494160 @default.
- W2558094457 hasRelatedWork W4281560664 @default.
- W2558094457 hasRelatedWork W4320060063 @default.
- W2558094457 hasRelatedWork W4323021782 @default.
- W2558094457 hasRelatedWork W4367335861 @default.
- W2558094457 hasRelatedWork W4383426745 @default.
- W2558094457 hasVolume "13" @default.
- W2558094457 isParatext "false" @default.
- W2558094457 isRetracted "false" @default.
- W2558094457 magId "2558094457" @default.
- W2558094457 workType "article" @default.