Matches in SemOpenAlex for { <https://semopenalex.org/work/W2558354856> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2558354856 abstract "Learning tasks such as those involving genomic data often poses a serious challenge: the number of input features can be orders of magnitude larger than the number of training examples, making it difficult to avoid overfitting, even when using the known regularization techniques. We focus here on tasks in which the input is a description of the genetic variation specific to a patient, the single nucleotide polymorphisms (SNPs), yielding millions of ternary inputs. Improving the ability of deep learning to handle such datasets could have an important impact in precision medicine, where high-dimensional data regarding a particular patient is used to make predictions of interest. Even though the amount of data for such tasks is increasing, this mismatch between the number of examples and the number of inputs remains a concern. Naive implementations of classifier neural networks involve a huge number of free parameters in their first layer: each input feature is associated with as many parameters as there are hidden units. We propose a novel neural network parametrization which considerably reduces the number of free parameters. It is based on the idea that we can first learn or provide a distributed representation for each input feature (e.g. for each position in the genome where variations are observed), and then learn (with another neural network called the parameter prediction network) how to map a feature's distributed representation to the vector of parameters specific to that feature in the classifier neural network (the weights which link the value of the feature to each of the hidden units). We show experimentally on a population stratification task of interest to medical studies that the proposed approach can significantly reduce both the number of parameters and the error rate of the classifier." @default.
- W2558354856 created "2016-12-08" @default.
- W2558354856 creator A5018478383 @default.
- W2558354856 creator A5026077101 @default.
- W2558354856 creator A5027437939 @default.
- W2558354856 creator A5032236197 @default.
- W2558354856 creator A5046714332 @default.
- W2558354856 creator A5067498363 @default.
- W2558354856 creator A5080039924 @default.
- W2558354856 creator A5080237714 @default.
- W2558354856 creator A5080896397 @default.
- W2558354856 creator A5086198262 @default.
- W2558354856 date "2016-11-04" @default.
- W2558354856 modified "2023-10-06" @default.
- W2558354856 title "Diet Networks: Thin Parameters for Fat Genomics" @default.
- W2558354856 hasPublicationYear "2016" @default.
- W2558354856 type Work @default.
- W2558354856 sameAs 2558354856 @default.
- W2558354856 citedByCount "2" @default.
- W2558354856 countsByYear W25583548562018 @default.
- W2558354856 countsByYear W25583548562021 @default.
- W2558354856 crossrefType "proceedings-article" @default.
- W2558354856 hasAuthorship W2558354856A5018478383 @default.
- W2558354856 hasAuthorship W2558354856A5026077101 @default.
- W2558354856 hasAuthorship W2558354856A5027437939 @default.
- W2558354856 hasAuthorship W2558354856A5032236197 @default.
- W2558354856 hasAuthorship W2558354856A5046714332 @default.
- W2558354856 hasAuthorship W2558354856A5067498363 @default.
- W2558354856 hasAuthorship W2558354856A5080039924 @default.
- W2558354856 hasAuthorship W2558354856A5080237714 @default.
- W2558354856 hasAuthorship W2558354856A5080896397 @default.
- W2558354856 hasAuthorship W2558354856A5086198262 @default.
- W2558354856 hasConcept C101738243 @default.
- W2558354856 hasConcept C104317684 @default.
- W2558354856 hasConcept C119857082 @default.
- W2558354856 hasConcept C124101348 @default.
- W2558354856 hasConcept C138885662 @default.
- W2558354856 hasConcept C141231307 @default.
- W2558354856 hasConcept C153180895 @default.
- W2558354856 hasConcept C154945302 @default.
- W2558354856 hasConcept C185592680 @default.
- W2558354856 hasConcept C189206191 @default.
- W2558354856 hasConcept C22019652 @default.
- W2558354856 hasConcept C2776401178 @default.
- W2558354856 hasConcept C39238701 @default.
- W2558354856 hasConcept C41008148 @default.
- W2558354856 hasConcept C41895202 @default.
- W2558354856 hasConcept C50644808 @default.
- W2558354856 hasConcept C55493867 @default.
- W2558354856 hasConcept C59404180 @default.
- W2558354856 hasConcept C83665646 @default.
- W2558354856 hasConcept C95623464 @default.
- W2558354856 hasConceptScore W2558354856C101738243 @default.
- W2558354856 hasConceptScore W2558354856C104317684 @default.
- W2558354856 hasConceptScore W2558354856C119857082 @default.
- W2558354856 hasConceptScore W2558354856C124101348 @default.
- W2558354856 hasConceptScore W2558354856C138885662 @default.
- W2558354856 hasConceptScore W2558354856C141231307 @default.
- W2558354856 hasConceptScore W2558354856C153180895 @default.
- W2558354856 hasConceptScore W2558354856C154945302 @default.
- W2558354856 hasConceptScore W2558354856C185592680 @default.
- W2558354856 hasConceptScore W2558354856C189206191 @default.
- W2558354856 hasConceptScore W2558354856C22019652 @default.
- W2558354856 hasConceptScore W2558354856C2776401178 @default.
- W2558354856 hasConceptScore W2558354856C39238701 @default.
- W2558354856 hasConceptScore W2558354856C41008148 @default.
- W2558354856 hasConceptScore W2558354856C41895202 @default.
- W2558354856 hasConceptScore W2558354856C50644808 @default.
- W2558354856 hasConceptScore W2558354856C55493867 @default.
- W2558354856 hasConceptScore W2558354856C59404180 @default.
- W2558354856 hasConceptScore W2558354856C83665646 @default.
- W2558354856 hasConceptScore W2558354856C95623464 @default.
- W2558354856 hasLocation W25583548561 @default.
- W2558354856 hasOpenAccess W2558354856 @default.
- W2558354856 hasPrimaryLocation W25583548561 @default.
- W2558354856 hasRelatedWork W2044325247 @default.
- W2558354856 hasRelatedWork W2076428881 @default.
- W2558354856 hasRelatedWork W2082852520 @default.
- W2558354856 hasRelatedWork W2569873096 @default.
- W2558354856 hasRelatedWork W2756063524 @default.
- W2558354856 hasRelatedWork W2778459472 @default.
- W2558354856 hasRelatedWork W2783297929 @default.
- W2558354856 hasRelatedWork W2896579497 @default.
- W2558354856 hasRelatedWork W2920539417 @default.
- W2558354856 hasRelatedWork W2951482750 @default.
- W2558354856 hasRelatedWork W2952183644 @default.
- W2558354856 hasRelatedWork W3002587223 @default.
- W2558354856 hasRelatedWork W3033159426 @default.
- W2558354856 hasRelatedWork W3037308981 @default.
- W2558354856 hasRelatedWork W3083184539 @default.
- W2558354856 hasRelatedWork W3132772989 @default.
- W2558354856 hasRelatedWork W3178212073 @default.
- W2558354856 hasRelatedWork W621566475 @default.
- W2558354856 hasRelatedWork W2894515000 @default.
- W2558354856 hasRelatedWork W3117921602 @default.
- W2558354856 isParatext "false" @default.
- W2558354856 isRetracted "false" @default.
- W2558354856 magId "2558354856" @default.
- W2558354856 workType "article" @default.