Matches in SemOpenAlex for { <https://semopenalex.org/work/W2558746217> ?p ?o ?g. }
- W2558746217 endingPage "143" @default.
- W2558746217 startingPage "118" @default.
- W2558746217 abstract "The spectral element marker particle (SEMP) method is a high-order numerical scheme for modelling multiphase flow where the governing equations are discretised using the spectral element method and the (compressible) fluid phases are tracked using marker particles. Thus far, the method has been successfully applied to two-phase problems involving the collapse of a two-dimensional bubble in the vicinity of a rigid wall. In this article, the SEMP method is extended to include a third fluid phase before being applied to bubble collapse problems near a fluid-fluid interface. Two-phase bubble collapse near a rigid boundary (where a highly viscous third phase approximates the rigid boundary) is considered as validation of the method. A range of fluid parameter values and geometric configurations are studied before a bioengineering application is considered. A simplified model of (micro)bubble-cell interaction is presented, with the aim of gaining initial insights into the flow mechanisms behind sonoporation and microbubble-enhanced targeted drug delivery. Results from this model indicate that the non-local cell membrane distortion (blebbing) phenomenon often observed experimentally may result from stress propagation along the cell surface and so be hydrodynamical in origin." @default.
- W2558746217 created "2016-12-08" @default.
- W2558746217 creator A5015688321 @default.
- W2558746217 creator A5032521598 @default.
- W2558746217 date "2017-04-01" @default.
- W2558746217 modified "2023-10-16" @default.
- W2558746217 title "Bubble collapse near a fluid-fluid interface using the spectral element marker particle method with applications in bioengineering" @default.
- W2558746217 cites W1963962297 @default.
- W2558746217 cites W1964811028 @default.
- W2558746217 cites W1966158133 @default.
- W2558746217 cites W1973600879 @default.
- W2558746217 cites W1982790167 @default.
- W2558746217 cites W1986303872 @default.
- W2558746217 cites W1998509683 @default.
- W2558746217 cites W2000055480 @default.
- W2558746217 cites W2012046994 @default.
- W2558746217 cites W2012205781 @default.
- W2558746217 cites W2019790121 @default.
- W2558746217 cites W2023248330 @default.
- W2558746217 cites W2030938331 @default.
- W2558746217 cites W2037494990 @default.
- W2558746217 cites W2047352485 @default.
- W2558746217 cites W2050005260 @default.
- W2558746217 cites W2054994653 @default.
- W2558746217 cites W2057081438 @default.
- W2558746217 cites W2060736183 @default.
- W2558746217 cites W2070112477 @default.
- W2558746217 cites W2070672521 @default.
- W2558746217 cites W2072736146 @default.
- W2558746217 cites W2079022594 @default.
- W2558746217 cites W2079776896 @default.
- W2558746217 cites W2080922987 @default.
- W2558746217 cites W2088285858 @default.
- W2558746217 cites W2088479755 @default.
- W2558746217 cites W2090892643 @default.
- W2558746217 cites W2096226033 @default.
- W2558746217 cites W2098053542 @default.
- W2558746217 cites W2102272144 @default.
- W2558746217 cites W2110344375 @default.
- W2558746217 cites W2113701402 @default.
- W2558746217 cites W2114248350 @default.
- W2558746217 cites W2116159141 @default.
- W2558746217 cites W2118396933 @default.
- W2558746217 cites W2120065201 @default.
- W2558746217 cites W2126986664 @default.
- W2558746217 cites W2127785899 @default.
- W2558746217 cites W2128433408 @default.
- W2558746217 cites W2129054907 @default.
- W2558746217 cites W2133870746 @default.
- W2558746217 cites W2142252829 @default.
- W2558746217 cites W2154420431 @default.
- W2558746217 cites W2168929673 @default.
- W2558746217 cites W2317138703 @default.
- W2558746217 cites W3198100659 @default.
- W2558746217 cites W800651370 @default.
- W2558746217 doi "https://doi.org/10.1016/j.ijmultiphaseflow.2016.11.010" @default.
- W2558746217 hasPublicationYear "2017" @default.
- W2558746217 type Work @default.
- W2558746217 sameAs 2558746217 @default.
- W2558746217 citedByCount "9" @default.
- W2558746217 countsByYear W25587462172019 @default.
- W2558746217 countsByYear W25587462172020 @default.
- W2558746217 countsByYear W25587462172021 @default.
- W2558746217 countsByYear W25587462172022 @default.
- W2558746217 countsByYear W25587462172023 @default.
- W2558746217 crossrefType "journal-article" @default.
- W2558746217 hasAuthorship W2558746217A5015688321 @default.
- W2558746217 hasAuthorship W2558746217A5032521598 @default.
- W2558746217 hasBestOaLocation W25587462171 @default.
- W2558746217 hasConcept C111368507 @default.
- W2558746217 hasConcept C121332964 @default.
- W2558746217 hasConcept C127313418 @default.
- W2558746217 hasConcept C134306372 @default.
- W2558746217 hasConcept C135628077 @default.
- W2558746217 hasConcept C144308804 @default.
- W2558746217 hasConcept C157915830 @default.
- W2558746217 hasConcept C2778517922 @default.
- W2558746217 hasConcept C33923547 @default.
- W2558746217 hasConcept C38349280 @default.
- W2558746217 hasConcept C44280652 @default.
- W2558746217 hasConcept C5192115 @default.
- W2558746217 hasConcept C57879066 @default.
- W2558746217 hasConcept C62354387 @default.
- W2558746217 hasConcept C62520636 @default.
- W2558746217 hasConcept C63632240 @default.
- W2558746217 hasConcept C74650414 @default.
- W2558746217 hasConcept C84655787 @default.
- W2558746217 hasConcept C90278072 @default.
- W2558746217 hasConcept C97355855 @default.
- W2558746217 hasConceptScore W2558746217C111368507 @default.
- W2558746217 hasConceptScore W2558746217C121332964 @default.
- W2558746217 hasConceptScore W2558746217C127313418 @default.
- W2558746217 hasConceptScore W2558746217C134306372 @default.
- W2558746217 hasConceptScore W2558746217C135628077 @default.
- W2558746217 hasConceptScore W2558746217C144308804 @default.
- W2558746217 hasConceptScore W2558746217C157915830 @default.
- W2558746217 hasConceptScore W2558746217C2778517922 @default.
- W2558746217 hasConceptScore W2558746217C33923547 @default.