Matches in SemOpenAlex for { <https://semopenalex.org/work/W2558780243> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2558780243 abstract "Automated damage assessment based on satellite imagery is crucial for initiating fast response actions. Several methods based on supervised learning approaches have been reported as effective for automated mapping of damages using remote sensing images. However, adopting these methods for practical use is still challenging, as they typically demand large amounts of training samples to build a supervised classifier, which are usually not readily available. With the advancement in technologies local and detailed damage assessment for individual buildings is being made available, for example through analysis of images captured by unmanned aerial vehicles, monitoring systems installed in buildings, and through crowdsourcing. Often such assessments are being done in parallel, with results becoming available progressively. In this paper, an online classification strategy is adopted where a classifier is built incrementally using the streaming damage labels from various sources as training samples, i.e. without retraining it from the scratch when new samples stream in. The Passive-Aggressive online classifier is used for the classification process. Apart from the classifier, the choice of image features plays a crucial role in the performance of the classification. The features extracted using recently reported deep learning approaches such as Convolutional Neural Networks (CNN), which learns features directly from images, have been reported to be more effective than conventional handcrafted features such as gray level co-occurrence matrix and Gabor wavelets. Thus in this study, the potential of CNN features is explored for online classification of satellite image to detect structural damage, and is compared against handcrafted features. The feature extraction and classification process is carried out at an object level, where the objects are obtained by over-segmentation of the satellite image. The proposed online framework for damage classification achieves a maximum overall accuracy of about 73%, which is comparable to that of batch classifier accuracy (74%) obtained for the same training and testing samples, however at a significantly lesser time and memory requirements. Moreover, the CNN features always significantly outperform handcrafted features." @default.
- W2558780243 created "2016-12-08" @default.
- W2558780243 creator A5013633154 @default.
- W2558780243 creator A5014462963 @default.
- W2558780243 creator A5037157287 @default.
- W2558780243 creator A5046864745 @default.
- W2558780243 creator A5086428184 @default.
- W2558780243 date "2016-01-01" @default.
- W2558780243 modified "2023-10-01" @default.
- W2558780243 title "Towards automated satellite image segmentation and classification for assessing disaster damage using data-specific features with incremental learning" @default.
- W2558780243 cites W1632706404 @default.
- W2558780243 cites W1849277567 @default.
- W2558780243 cites W1980971377 @default.
- W2558780243 cites W1984792953 @default.
- W2558780243 cites W2017206151 @default.
- W2558780243 cites W2031460245 @default.
- W2558780243 cites W2055632093 @default.
- W2558780243 cites W2055677294 @default.
- W2558780243 cites W2073989960 @default.
- W2558780243 cites W2082738326 @default.
- W2558780243 cites W2098676252 @default.
- W2558780243 cites W2103079830 @default.
- W2558780243 cites W2103394661 @default.
- W2558780243 cites W2114453181 @default.
- W2558780243 cites W2117251230 @default.
- W2558780243 cites W2118246710 @default.
- W2558780243 cites W2119393863 @default.
- W2558780243 cites W2160218441 @default.
- W2558780243 cites W2163922914 @default.
- W2558780243 cites W2164830012 @default.
- W2558780243 cites W2187098286 @default.
- W2558780243 cites W2294798709 @default.
- W2558780243 cites W2296756268 @default.
- W2558780243 cites W2963208797 @default.
- W2558780243 doi "https://doi.org/10.3990/2.369" @default.
- W2558780243 hasPublicationYear "2016" @default.
- W2558780243 type Work @default.
- W2558780243 sameAs 2558780243 @default.
- W2558780243 citedByCount "15" @default.
- W2558780243 countsByYear W25587802432019 @default.
- W2558780243 countsByYear W25587802432020 @default.
- W2558780243 countsByYear W25587802432021 @default.
- W2558780243 countsByYear W25587802432022 @default.
- W2558780243 countsByYear W25587802432023 @default.
- W2558780243 crossrefType "proceedings-article" @default.
- W2558780243 hasAuthorship W2558780243A5013633154 @default.
- W2558780243 hasAuthorship W2558780243A5014462963 @default.
- W2558780243 hasAuthorship W2558780243A5037157287 @default.
- W2558780243 hasAuthorship W2558780243A5046864745 @default.
- W2558780243 hasAuthorship W2558780243A5086428184 @default.
- W2558780243 hasBestOaLocation W25587802431 @default.
- W2558780243 hasConcept C108583219 @default.
- W2558780243 hasConcept C115961682 @default.
- W2558780243 hasConcept C119857082 @default.
- W2558780243 hasConcept C153180895 @default.
- W2558780243 hasConcept C154945302 @default.
- W2558780243 hasConcept C41008148 @default.
- W2558780243 hasConcept C52622490 @default.
- W2558780243 hasConcept C75294576 @default.
- W2558780243 hasConcept C81363708 @default.
- W2558780243 hasConcept C89600930 @default.
- W2558780243 hasConcept C95623464 @default.
- W2558780243 hasConceptScore W2558780243C108583219 @default.
- W2558780243 hasConceptScore W2558780243C115961682 @default.
- W2558780243 hasConceptScore W2558780243C119857082 @default.
- W2558780243 hasConceptScore W2558780243C153180895 @default.
- W2558780243 hasConceptScore W2558780243C154945302 @default.
- W2558780243 hasConceptScore W2558780243C41008148 @default.
- W2558780243 hasConceptScore W2558780243C52622490 @default.
- W2558780243 hasConceptScore W2558780243C75294576 @default.
- W2558780243 hasConceptScore W2558780243C81363708 @default.
- W2558780243 hasConceptScore W2558780243C89600930 @default.
- W2558780243 hasConceptScore W2558780243C95623464 @default.
- W2558780243 hasLocation W25587802431 @default.
- W2558780243 hasLocation W25587802432 @default.
- W2558780243 hasOpenAccess W2558780243 @default.
- W2558780243 hasPrimaryLocation W25587802431 @default.
- W2558780243 hasRelatedWork W2279398222 @default.
- W2558780243 hasRelatedWork W2766604260 @default.
- W2558780243 hasRelatedWork W2946016983 @default.
- W2558780243 hasRelatedWork W2986507176 @default.
- W2558780243 hasRelatedWork W3011074480 @default.
- W2558780243 hasRelatedWork W3156786002 @default.
- W2558780243 hasRelatedWork W3160711233 @default.
- W2558780243 hasRelatedWork W4225852842 @default.
- W2558780243 hasRelatedWork W4299822940 @default.
- W2558780243 hasRelatedWork W4366492315 @default.
- W2558780243 isParatext "false" @default.
- W2558780243 isRetracted "false" @default.
- W2558780243 magId "2558780243" @default.
- W2558780243 workType "article" @default.