Matches in SemOpenAlex for { <https://semopenalex.org/work/W2559431454> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W2559431454 endingPage "162" @default.
- W2559431454 startingPage "151" @default.
- W2559431454 abstract "Now a large scale of data every day, the large-scale data is usually in the form of database storage. The law of the people wants to find useful or knowledge, thus was born the Data Mining technology. SVM (Support Vector Machine, SVM) is a very useful method in data mining, this paper mainly discusses the Support Vector Machine (SVM) play a key role in nuclear techniques and the selection of model parameters is analyzed and evaluated. This article some methods about how to construct the kernel function is introduced for the model to find suitable kernel function is to provide some reference strategies and proposed kernel function method for the simulation analysis." @default.
- W2559431454 created "2016-12-08" @default.
- W2559431454 creator A5043828090 @default.
- W2559431454 date "2014-12-31" @default.
- W2559431454 modified "2023-09-26" @default.
- W2559431454 title "The Nuclear Techniques and the Selection of Model Parameters in Big Data" @default.
- W2559431454 cites W1503405070 @default.
- W2559431454 cites W1504380502 @default.
- W2559431454 cites W1541288193 @default.
- W2559431454 cites W1965341695 @default.
- W2559431454 cites W1976891431 @default.
- W2559431454 cites W2115865307 @default.
- W2559431454 cites W2140121784 @default.
- W2559431454 cites W2988574182 @default.
- W2559431454 cites W2166429091 @default.
- W2559431454 doi "https://doi.org/10.14257/ijdta.2014.7.6.14" @default.
- W2559431454 hasPublicationYear "2014" @default.
- W2559431454 type Work @default.
- W2559431454 sameAs 2559431454 @default.
- W2559431454 citedByCount "1" @default.
- W2559431454 countsByYear W25594314542015 @default.
- W2559431454 crossrefType "journal-article" @default.
- W2559431454 hasAuthorship W2559431454A5043828090 @default.
- W2559431454 hasBestOaLocation W25594314541 @default.
- W2559431454 hasConcept C124101348 @default.
- W2559431454 hasConcept C154945302 @default.
- W2559431454 hasConcept C2522767166 @default.
- W2559431454 hasConcept C41008148 @default.
- W2559431454 hasConcept C75684735 @default.
- W2559431454 hasConcept C81917197 @default.
- W2559431454 hasConceptScore W2559431454C124101348 @default.
- W2559431454 hasConceptScore W2559431454C154945302 @default.
- W2559431454 hasConceptScore W2559431454C2522767166 @default.
- W2559431454 hasConceptScore W2559431454C41008148 @default.
- W2559431454 hasConceptScore W2559431454C75684735 @default.
- W2559431454 hasConceptScore W2559431454C81917197 @default.
- W2559431454 hasIssue "6" @default.
- W2559431454 hasLocation W25594314541 @default.
- W2559431454 hasOpenAccess W2559431454 @default.
- W2559431454 hasPrimaryLocation W25594314541 @default.
- W2559431454 hasRelatedWork W1039292361 @default.
- W2559431454 hasRelatedWork W2397053934 @default.
- W2559431454 hasRelatedWork W2617449561 @default.
- W2559431454 hasRelatedWork W2808989540 @default.
- W2559431454 hasRelatedWork W3003361536 @default.
- W2559431454 hasRelatedWork W3184179822 @default.
- W2559431454 hasRelatedWork W4237919137 @default.
- W2559431454 hasRelatedWork W4247880953 @default.
- W2559431454 hasRelatedWork W4322629366 @default.
- W2559431454 hasRelatedWork W2551093110 @default.
- W2559431454 hasVolume "7" @default.
- W2559431454 isParatext "false" @default.
- W2559431454 isRetracted "false" @default.
- W2559431454 magId "2559431454" @default.
- W2559431454 workType "article" @default.