Matches in SemOpenAlex for { <https://semopenalex.org/work/W2559766475> ?p ?o ?g. }
- W2559766475 endingPage "32" @default.
- W2559766475 startingPage "21" @default.
- W2559766475 abstract "The forecasting ability of Multivariate Relevance Vector Machines (MVRVM), used previously to generate forecasts for the Dst index, is extended to forecast the Dst, AL, and PC indices during the years 1975–2007. Such learning machines are used in forecasting because of their robustness, efficiency, and sparseness. The MVRVM model was trained on solar wind and geomagnetic activity data sampled every hour with activity periods of various intensities, durations, and features. It was found that during the training phase, for a given error threshold, 14.60% of the training data was needed to explain the features of the data. The trained model was then tested on 177 different storm intervals, at various levels of geomagnetic activity, to generate simultaneous forecasts of the three indices at a lead time of one hour (1-h). The focus of the modeling was to assess the forecasts during main storm (MS) time periods when the indices show enhanced activity above quiet time values. The forecasts obtained by the MVRVM model reported in this paper returned a MS time average prediction efficiency, PE¯ of 82.42%, 84.40%, and 76.00% and RMSE¯ of 13.70 nT, 97.00 nT, and −0.77 mV/m, for the Dst, AL, and PC indices, respectively. The qualitative numbers indicated that the model underestimated the peak amplitude of the indices during the geomagnetic activity, but the peaks were forecasted on time by the model, on average. The forecasting results indicate a robust model generalization and the MVRVM's ability to learn the input-output relationship through a sparse model framework. A qualitative comparison with the previous univariate RVM forecast of Dst indicates that the model goodness of fit numbers improved in the present study." @default.
- W2559766475 created "2016-12-16" @default.
- W2559766475 creator A5044054954 @default.
- W2559766475 creator A5067133324 @default.
- W2559766475 date "2017-02-01" @default.
- W2559766475 modified "2023-09-28" @default.
- W2559766475 title "Use of Multivariate Relevance Vector Machines in forecasting multiple geomagnetic indices" @default.
- W2559766475 cites W1494970653 @default.
- W2559766475 cites W1588661091 @default.
- W2559766475 cites W1608826024 @default.
- W2559766475 cites W1782129337 @default.
- W2559766475 cites W1970488982 @default.
- W2559766475 cites W1975279341 @default.
- W2559766475 cites W1977065614 @default.
- W2559766475 cites W1977515458 @default.
- W2559766475 cites W1985669143 @default.
- W2559766475 cites W1986392119 @default.
- W2559766475 cites W1994733952 @default.
- W2559766475 cites W1998795704 @default.
- W2559766475 cites W1998983070 @default.
- W2559766475 cites W2006947831 @default.
- W2559766475 cites W2017174032 @default.
- W2559766475 cites W2018526478 @default.
- W2559766475 cites W2023954696 @default.
- W2559766475 cites W2029708797 @default.
- W2559766475 cites W2050184575 @default.
- W2559766475 cites W2060192010 @default.
- W2559766475 cites W2068713336 @default.
- W2559766475 cites W2071863254 @default.
- W2559766475 cites W2075232522 @default.
- W2559766475 cites W2075287085 @default.
- W2559766475 cites W2076815683 @default.
- W2559766475 cites W2077406389 @default.
- W2559766475 cites W2083957137 @default.
- W2559766475 cites W2103893476 @default.
- W2559766475 cites W2118621186 @default.
- W2559766475 cites W2118732434 @default.
- W2559766475 cites W2144070567 @default.
- W2559766475 cites W2151296816 @default.
- W2559766475 cites W2155365321 @default.
- W2559766475 cites W2163892015 @default.
- W2559766475 cites W2167182289 @default.
- W2559766475 cites W4236098766 @default.
- W2559766475 doi "https://doi.org/10.1016/j.jastp.2016.11.002" @default.
- W2559766475 hasPublicationYear "2017" @default.
- W2559766475 type Work @default.
- W2559766475 sameAs 2559766475 @default.
- W2559766475 citedByCount "8" @default.
- W2559766475 countsByYear W25597664752018 @default.
- W2559766475 countsByYear W25597664752019 @default.
- W2559766475 countsByYear W25597664752021 @default.
- W2559766475 countsByYear W25597664752022 @default.
- W2559766475 countsByYear W25597664752023 @default.
- W2559766475 crossrefType "journal-article" @default.
- W2559766475 hasAuthorship W2559766475A5044054954 @default.
- W2559766475 hasAuthorship W2559766475A5067133324 @default.
- W2559766475 hasConcept C104317684 @default.
- W2559766475 hasConcept C105795698 @default.
- W2559766475 hasConcept C115260700 @default.
- W2559766475 hasConcept C121332964 @default.
- W2559766475 hasConcept C134306372 @default.
- W2559766475 hasConcept C161584116 @default.
- W2559766475 hasConcept C170061395 @default.
- W2559766475 hasConcept C170641098 @default.
- W2559766475 hasConcept C177148314 @default.
- W2559766475 hasConcept C185592680 @default.
- W2559766475 hasConcept C199635899 @default.
- W2559766475 hasConcept C33923547 @default.
- W2559766475 hasConcept C41008148 @default.
- W2559766475 hasConcept C55493867 @default.
- W2559766475 hasConcept C62520636 @default.
- W2559766475 hasConcept C63479239 @default.
- W2559766475 hasConceptScore W2559766475C104317684 @default.
- W2559766475 hasConceptScore W2559766475C105795698 @default.
- W2559766475 hasConceptScore W2559766475C115260700 @default.
- W2559766475 hasConceptScore W2559766475C121332964 @default.
- W2559766475 hasConceptScore W2559766475C134306372 @default.
- W2559766475 hasConceptScore W2559766475C161584116 @default.
- W2559766475 hasConceptScore W2559766475C170061395 @default.
- W2559766475 hasConceptScore W2559766475C170641098 @default.
- W2559766475 hasConceptScore W2559766475C177148314 @default.
- W2559766475 hasConceptScore W2559766475C185592680 @default.
- W2559766475 hasConceptScore W2559766475C199635899 @default.
- W2559766475 hasConceptScore W2559766475C33923547 @default.
- W2559766475 hasConceptScore W2559766475C41008148 @default.
- W2559766475 hasConceptScore W2559766475C55493867 @default.
- W2559766475 hasConceptScore W2559766475C62520636 @default.
- W2559766475 hasConceptScore W2559766475C63479239 @default.
- W2559766475 hasLocation W25597664751 @default.
- W2559766475 hasOpenAccess W2559766475 @default.
- W2559766475 hasPrimaryLocation W25597664751 @default.
- W2559766475 hasRelatedWork W120846799 @default.
- W2559766475 hasRelatedWork W1971753667 @default.
- W2559766475 hasRelatedWork W2046631486 @default.
- W2559766475 hasRelatedWork W2052275678 @default.
- W2559766475 hasRelatedWork W2138447609 @default.
- W2559766475 hasRelatedWork W2144451755 @default.
- W2559766475 hasRelatedWork W2176508217 @default.